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 Introduction & Background 

Cementless fixation in total knee replacement has enjoyed limited success in the 

past; however, a renewed interest in cementless fixation is being heralded due to a 

number of factors.  Recent development of porous metal technology has provided 

improved biomechanical and biological properties which theoretically allow improved 

stability and ultimate osseointegration.  In addition, it is clearly understood that cement 

represents a weak interface that if successfully eliminated, would result in improved knee 

replacement implant survivorship via long-term osseointegration.  Finally, an additional 

impetus results from the increased operative efficiency and decreased operative times that 

would result from elimination of the cementation process and the time required for 

curing.  It has been clearly elucidated that minimizing surgical duration decreases the 

incidence of infection, clearly in the best interest of patient and surgeon alike.  

The initial mechanical stability of cementless implants is critical to minimizing 

micromotion between the bone and porous-coated surface, subsequently providing the 

necessary conditions for successful osseointegration of the implant.  Numerous studies 

demonstrate micromotion greater than 150μm leads to fibrous tissue formation at the 

interface between the implant and the host bone, whereas micromotion of 40μm or less 

provides sufficient stability for reliable osseous integration.[1-4]  Osseointegration of the 

porous metal implant surface is necessary for maintaining the interface and integrity of 

the fixation of the implant over an extended time period.  Therefore, minimizing 

micromotion through optimal initial mechanical fixation is critical to the long-term 

success of cementless knee replacement implants. 

A critical component to any total knee replacement system is a durable and well-

functioning patellar component.  As with tibial and femoral components, cementless 

metal-backed patellar components have experienced limited use since reports of early 

failure emerged in the late 80s and early 90s.[5-20]   However, with success of certain 

cementless, metal-backed patellar component designs[21-25] and the emergence of 

improved biomaterials, particularly porous titanium and tantalum[26-32], there is a 

renewed interest in developing a cementless patellar component to enhance long-term 

survivorship. 

 



 2

Purpose 

The purpose of this biomechanical study is to twofold.  First, other than in vivo 

RSA techniques, the traditional method used to assess initial mechanical stability of 

cementless implant designs has been via measuring micromotion at the implant-bone 

interface during simulated in vitro mechanical loading.[33-39]  This methodology, 

although well established in the orthopaedic literature, has significant limitations inherent 

in using linear variable differential transducers (LVDT) of varying specifications and 

quality, as well as the frequently challenging task of constructing a test apparatus and 

configuration that allows accurate and reliable placement of LVDTs in multiple planes of 

motions to be measured.  Therefore, the first purpose of this study is to assess whether 

vibration analysis techniques can be used to evaluate and characterize initial mechanical 

stability of cementless implants more accurately than the traditional method of 

micromotion analysis. 

The second purpose of this study is to evaluate and determine the comparative 

mechanical stability of various designs of cementless patella components under 

mechanical loading designed to simulate in vivo forces.  The various designs will include 

a control group of a cemented patella design, a “cementless control” of a currently 

accepted cementless design and compare three different newly-developed cementless, 

porous-titanium designs. 

 

Investigation Hypotheses 

1. Vibration analysis will represent a more specific and consistent methodology 

to assess initial mechanical stability of cementless patella components as 

compared with traditional micromotion measurements under simulated in vivo 

mechanical loading. 

2. New porous-titanium metal backed patellar components will compare 

favorable with the control group (cemented all-polyethylene patella) and 

demonstrate superior mechanical stability over the currently accepted porous 

metal cementless patella when subjected to identical in vivo forces via 

mechanical testing. 



 3

Methods 

Different patella component designs will be subjected to mechanical testing designed 

to simulate in vivo loads seen in the native patellofemoral joint and in the patella after 

total knee arthroplasty.[40-50]  It is proposed to test 5 specimens of each of the 6 groups 

listed below in order to provide sufficient power for statistical comparison between 

groups.  The five patella designs (six test scenarios including 2a) will be: 

1. Cemented all-polyethylene patellar component (control group) 

2. Cementless porous-coated, metal-backed patellar component of established 3-

cylindrical-peg design (“cementless control”) 

a. Simulated patellar component “aseptic loosening” via over-drilled peg 

holes.  This additional test group should enhance the comparison of 

vibration and micromotion techniques to assess implant stability. 

3. Cementless porous titanium patellar component with three cylindrical pegs 

similar in geometry to #2 

4. Cementless porous titanium patellar component with three hex pegs designed for 

enhanced interference fit of the peg within prepared bone peg hole 

5. Cementless porous titanium patellar component with three cylindrical pegs 

(identical in geometry to #3) with the added design feature of a 1mm thick layer 

of porous titanium on the anterior baseplate that is “inset” into the patellar bone to 

minimize shear stress at the peg/baseplate interface 
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Each patellar prosthesis will be implanted by a 

surgeon who specializes in knee replacement surgery 

utilizing prosthesis-specific instrumentation which 

will be standardized to be similar for all specimens.  

The implants will be inserted into in rigid 

polyurethane Foam Block specimens (Sawbones, 

Pacific Research Laboratories Inc, Vashon, WA). The 

ASTM F-1839 "Standard Specification for Rigid 

Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and 

Instruments" states that; "The uniformity and consistent properties of rigid polyurethane 

foam make it an ideal material for comparative testing of bones screws and other medical 

devices and instruments."  The polyurethane blocks are designed to minimize the inter-

specimen variability that exists in cadaveric specimens.  This will provide a more 

accurate assessment of the comparative biomechanical stability of the various implant 

designs by minimizing the confounding variable of specimen variability.  A control group 

of a five cemented all-polyethylene patellar component will be prepared using Simplex-P 

polymethylmethacrylate cement and the remaining patellar component design groups 

(containing 5 specimens in each design group) will be inserted without cement.   

Once implanted into the polyurethane foam blocks, the patellar implant will be 

attached to a servohydraulic MTS testing machine.  The specimen construct will be 

rigidly aligned so that the MTS load cell impacts the patella eccentrically and in a 

direction that has been determined to represent the direction of the maximum force 

vector.  The magnitude and direction of the maximum force vector was determined by a 

comprehensive review of the available patellofemoral biomechanical studies in the 

current literature.[40-50]  The maximum anteroposterior compressive force magnitude 

reported is 800 N and occurred at 85 degrees of the flexion cycle.[44]  The maximum 

mediolateral and superoinferior shear force reported is 200 N.[44]  Numerous other in 

vitro patellar force studies report similar magnitudes of compressive and shear force 

measurements that occur from 70 to 110 degrees in the knee flexion cycle.  Therefore the 

load cell of the MTS machine will be applied to create a resultant force equal to that 
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which creates a maximum 800 N anteroposterior compressive force and a 200 N 

mediolateral and superoinferior shear force as the maximum values in the loading cycle.  

In addition, the load cell will contact the patella approximately 5mm superior and 1 mm 

medial to the center of the patella, where the resultant force center of pressure has been 

determined to be located in vitro.[47]   

 

Loading Cycle 

The loading cycle has been determined based on established and reported 

micromotion studies involving tibial components in total knee arthroplasty[33-39, 51, 52] 

and adapted to reach the maximum forces from the applicable in vitro patellofemoral 

studies discussed previously[40, 41, 43-48, 50, 53].  The patella will be preloaded with 

50 N for 10 seconds in order to determine the initial conditions of each experimental 

construct and measure the background noise inherent in the system.  The prosthesis will 

then be subjected to a sinusoidal load from 50 N to 850 N at 0.1 Hz for 60 cycles.  

 

Micromotion Measurements 

Implant motion relative to the polyurethane foam specimen block will be 

measured by linear variable differential transducers (LVDT) with a manufacturer 

reported resolution of 2 µm.  The LVDTs will be attached rigidly to the polyurethane 

foam block and then contact the patellar implant collinear to the direction of motion 

resulting in six degrees of freedom.  Three LVDTs will be required and positioned to 

measure micromotion in the superoinferior, mediolateral and anteroposterior direction.  

LVDT data will be sampled at a rate of 10 Hz for the 60 cycles.  Micromotion is 

considered the maximum recoverable motion during each cycle, whereas non-recoverable 

motion is termed migration or subsidence.  These values will be determined for each 

plane of motion, in each cycle, for each of the tested specimens via the data acquisition 

system. 
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Project Resources and Material 

 

Supplied by Rose-Hulman Institute of Technology/Los Alamos National Laboratory: 

• 35 polyurethane foam testing blocks 

• MTS machines, MTS testing jigs and experimental setup 

• Laboratory technician, assistance and support 

 

Supplied by Stryker, Inc: 

• 3 linear variable differential transducers 

• Patellar Implants 

o 5 all-polyethylene 

o 5 traditional porous coated cementless 

o 5 porous-titanium cylindrical peg 

o 5 porous titanium hex peg 

o 5 porous titanium cylindrical peg, 1 mm inset baseplate 

• Patella Implant specific instrumentation (power, drills, drill guides, inset reamer, 

impactor) 

• 22m femoral head (attach to MTS load cell for contact with patellar implant) 

• 5 batches PMMA cement 

 

Principle Investigator (R. Michael Meneghini, MD): 

• Project inception, discussion with Rose-Hulman and Stryker engineers for 

additional insight & support 

• Literature review of existing mechanical studies regarding 

• Development of project methods and mechanical testing protocol 

• Travel to Rose-Hulman (Terre Haute, IN) and Stryker (Mahwah, NJ) for project 

development and implementation 

• Specimen preparation and implant insertion. 

• Abstract submission to various orthopaedic meetings if appropriate. 

• Manuscript preparation for peer-reviewed orthopaedic journal if appropriate. 
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Timeline 

 
January 2007 

• Project Inception and initial presentation to Stryker (RMM & ADH) 
 
January – May 2007 

• Identification of existing literature and biomechanical studies 
• Review of existing protocols and identification of study hypothesis 
• Establish methods and mechanical testing protocol 
• Create draft of protocol and budget 
• Meetings between Drs. Meneghini, Cornwell, Hanssen and Stryker engineers to 

fine-tune study protocol, testing methods and implant and testing material 
acquisition. 

• Stryker implant manufacture and delivery (with remaining materials) to Los 
Alamos National Laboratory by last week of May. 

 
June 2007  

• Summer “Vibrations School” commences at Los Alamos National Lab, with 
project team under the direction of Phil Cornwell, PhD. 

 
August 2007 

• Data analysis and completed manuscript. 
• Project team presentation at IMAC conference. 

 
April 2008 

• If appropriate, submit “Assessment of cementless implant stability using 
micromotion vs. vibration analysis” abstract to AAHKS 2008 Annual Meeting 
(RMM & ADH) 

  
June 2008 

• If appropriate, submit “Assessment of cementless implant stability using 
micromotion vs. vibration analysis” abstract to ORS 2009 Annual Meeting 
(RMM, PC & ADH) 


