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Abstract 
 
This paper presents a variety of structural health monitoring (SHM) techniques, based on the use of piezoelectric 
active-sensors, used to determine the structural integrity of wind turbine blades.  Lamb wave propagation, 
frequency response functions, and a time series based method are utilized to analyze the wind turbine blade. For 
these experiments, a 1m section of a 9m CX100 blade is used.  Different types of simulated damage are 
introduced into this structure and a performance matrix is created to compare the validity and functionality of each 
technique. Overall, these three methods yielded sufficient damage detection to warrant further investigation into 
field deployment.  Time series analysis shows the most effective and reliable to detect damage while lamb wave 
testing could locate, as well as detect the onset of damage. This paper summarizes considerations needed to 
design such SHM systems, experimental procedures and results, and additional issues that can be used as 
guidelines for future investigations.   
 
 
Introduction 
 
In past years, wind turbine technology has become a topic of extensive investigation.  The DOE projects that 20% 
of the US electrical supply could be produced via wind power by 2030 [1].  In order to reach this goal, an increase 
in the efficiency of wind power generation will be required. Therefore, a nondestructive, structural health 
monitoring (SHM) technique that can be used in real-time during operation could be very useful in the wind 
turbine industry [2].  These structures are not only immensely difficult to install due to their large size but are 
normally placed in remote locations.  It would be cost-effective to design and implement an SHM system which 
would enable the operator to monitor these structures from an offsite location, while safely maintaining the 
system.   An important component of the wind turbine system to monitor is the blade because it contributes 15 – 
20% to the total cost, is one of the most expensive components to repair, and can create secondary damage to 
other components due to rotational imbalance [3].   
 
The goal of this study is to assess the advantages and disadvantages of using high-frequency SHM techniques, 
including lamb wave, frequency response function, and time series based measurements as a way to 
nondestructively monitor the health of a wind turbine blade with piezoelectric sensors [4-6].  An array of 
piezoelectric sensors on a 1m section of a 9m CX100 blade are used for the purposes of this research.  The 
assessment will delve into how to provide damage detection effectively with each method.  Optimization of issues 
which arise with items such as testing procedures, data collection and data processing are attempted.  Lamb 
wave propagation uses waves traveling through the thickness of the structure.  Similarly, frequency response 
functions measure the frequency response of the structure given an excitation.  On the other hand, time series 
analysis uses time domain responses from the structure to determine a data-driven model and use that model to 
determine if the system is damaged.  These three techniques measure real-time data at high-frequency ranges 
(>5 kHz).  When a system response is compared against baseline, undamaged, measurements a noticeable 
variation can imply structural damage. 
 
A performance matrix is then created to look into the three SHM techniques and compares a defined set of 
damage detection parameters.  Damage detection has been defined with three major parameters which will be 
detailed in the later section:  the detection area of an individual sensor, the ability to locate the onset of damage, 
and the minimum damage size for damage verification.  Industry is optimally looking for a technique that can 
detect the location of minor damage with a small number of sensors within a large area.  The wind turbine blade 
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itself can easily be damaged with no signs due to the delamination occurring within the composite material.  
Moreover, the turbine blade could catastrophically fail, cause an imbalance, and render the system inoperable.   
 
In addition to these parameters, commercialization and implementation concerns (weight, cost, installation, etc.) 
are addressed after analyzing the three techniques.   For instance, it is crucial for complex SHM systems to self-
diagnose and interpret errors within sensors.  Sensor fracture is the most common type of failure, which can be 
attributed to the brittle nature of many piezoelectric devices.  Another issue that arises is the bonding condition of 
the PZT sensors to the structure.  During use, the adhesive can easily fail which would result in inaccurate data. If 
there is no self diagnostic tool within the system, then sensor damage would be interpreted as structural damage 
and the health monitoring system would be ineffective.  These concerns will also be part of the performance 
matrix in order to accurately assess the commercial feasibility of each technique. 
 
 
2 Experimental Procedure 
 
The basic experimental setup for the comparison of structural health monitoring systems consisted of a 1m 
section of a CX100 wind turbine blade instrumented with piezoelectric patches, as shown in Figure 1 below.  The 
patches were connected to a National Instruments PXI data acquisition system, shown in Figure 2 below.   
 
 
2.1 Lamb Wave Propagation 
 
The lamb wave propagation experiment was performed, which utilizes one of the piezoelectric patches as an 
actuator and another as a sensor.  The user interface for this program can be seen in Figure 2 below. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The interface allows for the modification of the excitation waveform, both shape and magnitude.  For this set of 
experiments a Morlet Wavelet was selected and the interface provides control over the waveform’s center 
frequency.  The tests used four piezoelectric patches which results in six wave propagation paths, as seen in 
Figure 3 below.  The vertical path is located directly on the center support spar of the blade, as seen in the cross 
section picture in Figure 4. 
 
 
 

  Figure 1: Turbine Blade Section  Figure 2: Lamb Wave Testing Interface



 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
2.1.1 Input Waveform Frequency 
 
To maximize the effectiveness of the lamb wave technique the excitation frequency needs to provide a response 
that is capable of indicating damage.  In order for damage detection to be possible the magnitude of the response 
must be of a sufficient magnitude, and the response must be separated by a sufficient amount from the 
electromagnetic interference to allow for proper identification of the arrival waveform.  Due to the complexity of the 
blade section, traditional methods of predicting the ideal excitation frequency for homogeneous material are not 
applicable and the ideal frequency must be determined by experimentation. 
 
The aforementioned setup was used to modify the center frequency of the input waveform and the response was 
recorded along each of the propagation paths.  The response was recorded for a range of frequencies from 15 
kHz to 250 kHz.  The frequencies which displayed the best response were selected for further testing to identify 
damage detection capability.   
 
To determine the damage detection capability of each frequency the natural response of the system was used as 
the baseline.  Damage was then simulated by applying a piece of industrial putty to the surface of the turbine 
blade in the path of propagation of the lamb waves.  The putty simulates changes in the damping of the structure 
in a localized area, similar to the effects of delamination formation.  For this set of tests the putty section was 
approximately a 3.5cm square with 0.5cm thickness.  The putty was placed in the path of the propagating waves; 
this was done for all of the paths. Figure 5 illustrates an example of the putty acting as damage on the structure. 
 

 
 

Figure 5: Putty attached to the blade to simulate Damage 
 
2.1.2 Baseline Measurements and Environmental Variations 
 
After the ideal excitation frequency has been determined, multiple baselines for the undamaged structure were 
recorded.  Thus these baselines contain some variations in the boundary conditions to attempt to simulate 
potential real world variability.  Several damaged measurements were also taken during this set of testing to 

Figure 3: Propagation Directions Figure 4: Cross Section View of Turbine Blade 



determine the damage detection capabilities of each technique.  Table 1 contains a list of environmental 
variations and damage locations that were tested. 
 

Table 1: Environmental Variations 

 
The tests were conducted along all six paths for the frequency(s) of interest. 
 
2.2 Frequency Response Method 
 
The frequency response method was investigated using a National Instrument data acquisition system.  The user 
interface for this program can be seen in Figure 6 below. 
 

 
 

Figure 6: FRF User Interface 
 
The interface uses one of the piezoelectric patches as an actuator and a different one as a sensor.  The actuator 
is connected through an amplifier to the DAQ function generator.  The waveform sent to the actuator by the 
amplifier is recorded by connecting the amp to one of the DAQ’s inputs.  The sensor is connected directly to one 
of the DAQ’s input channels.   The program allows for the manipulation of the excitation waveform, specifically the 
excitation bandwidth.  The program creates the frequency response function (FRF) based on the recorded 
excitation waveform and sensor output. 
 
Four paths, shown in Figure 7, were experimentally tested and as in the lamb wave propagation method, a variety 
of boundary conditions was used to determine variations in the baseline data for each path (See Table 1).  These 
data sets were then used to compare with the damaged data, simulated by applying a square piece of industrial 
putty to the surface of the turbine blade. 
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Figure 7: FRF Propagation Directions 
 

2.3 Time Series Analysis 
 
The system used to capture the time domain response of the structure was a Dactron LabVIEW program.  The 
structure was excited with a chirp signal from 5 – 20 kHz over a voltage range of 30 volts.  The sampling 
frequency was 48 kHz, a total of 8192 points data points were recorded.  Two paths were analyzed, as seen in 
Figure 8. 
 
 
 
 
 
 
 
 
 

Figure 8: Time Series Propagation Paths 
 
 
3 Results 
 
The data analysis for this project was conducted using EPDLab, an interactive Python environment. 
   
3.1 Lamb Wave Propagation 
 
Lamb wave testing consisted of two phases.  The first was determining the ideal excitation frequency.  As 
previously stated, the ideal excitation frequency could not be determined with traditional methods and had to be 
determined experimentally with an anisotropic material.  The second phase was the collection of multiple baseline 
cases as well as damage identification testing.   The purpose of this peculiarity in the testing was to see if the high 
frequency source could excite the structure so that even small damage could be detected. 
 
3.1.1 Preliminary Testing Analysis 
 
The preliminary testing consisted of a qualitative analysis on the systems response.  The response at a range of 
frequencies (15-250 kHz) was visually analyzed to determine the frequency which gave the best response for 
each path (See Figure 3: Propagation Directions).  The parameters monitored were the time offset, noise 
disturbance, and magnitude of the systems response.  See Figure 9 for a graphical description of some of these 
parameters. 



 

 
Figure 9: Lamb Wave Response Parameters 

 
Overall, most of the paths showed desirable responses with an input frequency of 25 kHz. Two paths did not 
follow this trend and gave more advantageous responses with an input frequency of 200 kHz.  Therefore, the 
second phase of lamb wave testing was conducted at both 25 kHz and 200 kHz. 
 
3.1.2 Baseline and Damage Testing Analysis 
 
Once a reasonable frequency for each path was determined from the preliminary qualitative analysis, additional 
testing was performed on the structure.  The testing consisted of collecting baseline and damaged cases.  The 
purpose of this study was to detect damage within the structure.  In order to accomplish this task, the data were 
reduced by transforming time-domain data into the frequency domain, and performed a cross-correlation analysis 
between a “true” baseline measurement and newly acquired data. 
 
The first step in the process was to reduce the collected data sample.  This step was required because the 
experimental set up yielded an output signal with a large electromagnetic interference (EMI) (as seen in the first 
portion of Figure 9).  Thus the data were truncated to remove this unwanted portion of the data. 
 
Next, the truncated output signal was converted into the frequency domain with a discrete Fourier transform. The 
system acts like a ‘band pass filter’, allowing some frequencies to pass more readily than others.  The frequency 
domain allows a graphical representation of the system’s frequency response to a given input.  To determine an 
acceptable variation in the signal’s frequency response, multiple baseline measurements were taken with 
changing environmental parameters, as mentioned in the Experimental Procedure section, to produce a bank of 
responses.  This bank of baseline responses provides a foundation to compare with the damaged cases.  If 
damaged is induced, the Fourier transform can potentially depict a distinct change in either the magnitude or the 
frequency content of the response signal versus the baseline measurements.  See Figure 10 to visually describe 
an example of how the data were processed.  
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Figure 10: Lamb Wave Data Reduction 

 
Once the data were transformed into the frequency domain, a cross correlation analysis was made between the 
baseline and damaged frequency domain data.   Cross correlation is a measure of linear relationship between two 
waveforms, while a time-lag function is applied to one of them.  One can potentially see a drop in correlation 
magnitude between the data sets as well as a lag or lead in the position of the largest magnitude correlation.  
Figure 11 illustrate an example. Each baseline and damaged case is compared to a single ‘true’ baseline case to 
determine if a significant difference in correlation is evident.  The red dots represent the damaged case while the 
other nine dots of varying colors represent the baseline cases.    One can see a lower correlation of the damaged 
case with respect to the baseline cases. 
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Figure 11: Lamb Wave Cross Correlation Graph 

 
 
A damage index was created, which uses the maximum value of each cross correlation and subtracts the value 
from one.  In Figure 12, one can clearly observe a large difference in the damage index between the damaged 
measurement and the other baseline comparisons. The last measurement was taken when the putty was 
attached in the direct path between the sensor and actuator.  The value of the damage index allows for a decision 
to be made on the structural integrity of the system and if damaged has occurred. 
 

 
Figure 12: Lamb Wave Damage Index Graph 

 

3.2 Frequency Response Testing Analysis 
 
Initially, the testing was conducted using an input frequency bandwidth of 30-80 kHz on each path, as shown in 
Figure 7.  The data were captured in the time (to perform an auto-regressive time series analysis found in the next 
section) and frequency domain.  For the purposes of frequency responses, only the frequency domain data were 
used.     
 
3.2.1 Frequency Response Functions (FRF) Analysis 
 
Much like the lamb wave propagation data, a cross correlation was performed to compare a bank of baseline 
responses (all with different environmental procedures) with damaged responses.  See Figure 13 for an example.  
One can see on Figure 13 lines 1-10 are baseline cases while line D is a damaged case.  The same applies for 
Figure 13 where the red dots show a low cross correlation with respect to the nine baseline cases, which correlate 
very well. 
 



                                                                             
Figure 13: Frequency Response Function                                   Figure 14: FRF Cross Correlation Graph 
 
Next, a damage index was created from the cross correlation graph to determine a qualitative value between the 
damaged and undamaged cases as in Figure 15.  This once again shows likelihood for damage in the tenth 
response. 
 

 
Figure 16: FRF Damage Index Graph 

 
3.3 Time Series Analysis 
 
 An auto-regressive with exogenous input (ARX) time series analysis uses the data obtained during the frequency 
response testing (in the time domain) to calculate a predictive model and apply it to potentially determine damage 
in the structure.  An ARX model is used to predict the output response of the system using data gathered in the 
time domain from both the output and input sensors.  This predicted output response from the ARX model can 
then be compared to the actual response initially captured during testing to determine if significant error is 
present.  If the model is incapable of predicting the newly measured response, then the system has changed in 
some way that damage may be present. 
 
3.3.1 Normalizing Data 
 
The time domain data was first cut to include just 60% of the data (from 20% - 80 % of the data set) in order to 
decrease computational time and ensure the noise seen at the extreme excitation frequencies did not significantly 
affect the model.  This reduced data set was then normalized with respect to the standard deviation so that each 
set could be compared during the statistical portion to determine damage.  See Equation1 for the normalization 
procedure. 
 

Xnormalized = (Xoriginal - Xmean)/σ           (1) 
 
Lastly, a high and low pass filter of 5 and 20 kHz, respectively was applied to the resultant data set. 
 
3.3.2 Creating an ARX Model 
 
Using time domain data from a random excitation input signal from one sensor to another, an ARX model can be 
formulated.  Theoretically, the equation can be written as: 
 



 
 

Initially to create the model, baseline data needs to be taken.  The baseline data from the input and output 
sensors can be placed on both the right and left hand side of the equation in order to solve for the unknown 
coefficients (Aj

 and Bi).  These coefficients model the system’s baseline output response.  Applying new data to 
the ARX model, a predicted output response can be created.  If one were to apply a different baseline case to the 
newly created ARX model, the predicted response would be expected to highly correlate to the actual response of 
the system.  Figure 16 illustrates the predicted and actual baseline response. 
 

 
 

Figure 16: Predicted and Actual Baseline Responses 
 
3.3.3 Determining Order 
 
To perform this time series analysis, one must first determine the optimal order of the model.  For the purposes of 
this project, The Akaike’s Information Criterion (AIC) was used with built-in Matlab functions. An order of 218 for 
the input and 177 for the output was found.  However, an order of 218 will be used for both the input and output 
for this project, since it provides better results.   
 
A normal probability plot of the residual error between the actual and predicted data should show a normal 
distribution if the model is working accurately.  As can be seen in Figure 17, the model order chosen works 
accurately and provides a normal probability of error. 
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Figure 18: Residual Error Normal Probability Plot 

 
 
 
 



3.3.4 Correlation Technique: Residual Error 
 
The ARX model can be used to make a predicted response as stated before from an actual response of the 
system.  The predicted response can be correlated to the actual response using the residual error between the 
actual and predicted responses of the system.  In practice, the actual and predicted responses from a baseline 
case should correlate well and have a relatively small residual error value.  Using this method, a set of correlated 
baseline cases can be used to determine a threshold residual error value, much like the lamb wave and frequency 
response methods.  Damaged cases and their corresponding residual error values can be compared to the bank 
of baseline residual error values to find any significant difference to determine if damage is present.  Potentially, 
the actual and predicted damaged cases should yield a relatively large residual error value.   
 
This trend can successfully be seen in the data, shown in Figure 18.  The baseline residual error is significantly 
smaller on average compared to the damaged residual error for a representative example baseline and damaged 
case. 
 

          Baseline Residual Error              Damaged Residual Error 

    
 

Figure 18: Baseline and Damaged Residual Error Value Comparison 
 
Comparing all the cases, both undamaged and damaged, damaged cases close to the path could be detected, 
while damaged placed farther away or with little surface area could not.  Figure 19 shows the RMSE (root mean 
square error) values of the undamaged cases in green and damaged cases in red.  The blue line was chosen by 
visual inspection of the chart and determining the threshold residual error value so that no false positives would 
occur.  A value of 0.038 was used for damage detection in this study.   

 
 

Figure 19: Path 2 Residual Error Plot 
 
As seen in Figure 19, not all damage can be detected since it is distant from the path, although some causes 
larger variations than undamaged conditions. This results points out the importance of identifying better threshold 
limits for damage identification.  In addition, a further study is needed in order to quantify the sensing range of this 
method. 

 
 
 



4 Conclusions 
 
It can be shown that all three techniques (lamb wave, frequency response, and time series analysis) can detect 
damage, have localized sensing capability, and are less sensitive to operational variations.  Lamb wave testing 
was capable of detecting damage only when it was close the path of the propagating wave.  For this reason lamb 
waves could be used to determine the location of the damage.  The frequency response method showed an 
intriguing ability to detect damage when it was located anywhere along the spar of the blade section.  This is 
significant because the majority of the delamination in turbine blades occurs when the skin detaches from the 
spar.  The time series analysis is the simplest of the three techniques and thus the memory and power usage of 
the system is minimal.  This is ideal for a SHM system that needs to be self powered when in operation on a real 
structure.  Table 2 depicts the advantages and disadvantages of each technique to give a comparison between 
the techniques and illustrate which technique is best for a given scenario. 
 

Table 2: Performance Matrix 
 

 Pros  Cons                                         
Memory         Power                 Damage             Other 
                                                 Detection       

Lamb Wave  Locate Damage High 
Memory  
Usage 

High Power 
Consumption 

Damage  
 Very Close 
to Path 

Multiple 
Frequencies 

Frequency 
Response  

Sensitive to Spar Damage  Moderate  
Memory  
Usage 

Moderate  
Power 
Consumption 

  

Time Series  Memory 
Usage 

Power 
Consumption 

  Damage  
Close 
to Path 

EMI Effect  

 
 
In order to determine a viable damage detection package for commercial use, actual system testing within 
operating wind turbine blades needs to be performed.  Also, an investigation into wireless sensing and power 
harvesting for the sensing network should be looked into.  Additionally, a more rigorous statistical analysis to 
create a threshold value should be determined. 
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