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ABSTRACT 
 
This paper gives an overall presentation of a research 
project pursued at Los Alamos National Laboratory for 
the validation of numerical simulations for engineering 
structural dynamics. An impact experiment used to 
develop and test the model validation methodology is 
presented. Design of experiments techniques are 
implemented to perform parametric studies using the 
numerical model and improve its predictive quality. The 
analysis relies on correlation study where input 
parameters responsible for explaining the total 
variability of the numerical experiment are identified, 
then, updated. The quality of the model is assessed via 
its ability to reproduce the same statistics as those 
inferred from the experiment data sets. Throughout the 
paper, a particular emphasis is placed on presenting the 
contribution to this project of Amanda Wilson, 
undergraduate student at Texas Tech University, and 
research assistant at Los Alamos in the summer of 
2000 in conjunction with the Los Alamos Dynamics 
Summer School. The model validation project is 
described in greater details in the companion paper [1]. 
 
NOMENCLATURE 
 
The recommended “Standard Notation for Modal 
Testing & Analysis” is used throughout this paper [2]. 
 
1. INTRODUCTION 
 
Current model updating and refinement methods in 
structural dynamics are generally based on linear 
assumptions and do not provide quantifiable confidence 
intervals for model components. Updating techniques 
commonly attempt to map the experimental information 
to the model space. This results in a confounding of 
system information through the data expansion or 
condensation. There is normally little evaluation from 
either a design of experiments or statistical approach to 

quantify the model updating mechanism for a range of 
applications and confidence intervals. 
 
This research aims at exploring pattern recognition and 
Design of Experiment (DoE) techniques to improve the 
predictive quality of numerical models via model 
updating and refinement. Here, the emphasis is placed 
on presenting the contribution to this project of Amanda 
Wilson, undergraduate student at Texas Tech 
University, Lubbock, Texas, and research assistant at 
Los Alamos National Laboratory (LANL) in the summer 
of 2000 in conjunction with the Los Alamos Dynamics 
Summer School. A complete description of the model 
validation project can be obtained from paper [1]. After 
a brief description of the impact test in section 2, the 
test data variability is discussed (section 3) and the 
features or output parameters of interest are presented 
(section 4). A description of the numerical model follows 
in section 5. Sensitivity studies and statistical effect 
analyses are contrasted in sections 6 and 7, 
respectively. The generation of statistical meta-models 
from the computer experiment’s output and the 
optimization of fast-running models are presented 
briefly in section 8. Finally, key enabling software 
aspects are discussed in section 9. 
 
2. IMPACT EXPERIMENT 
 
In this section, a brief description of the impact 
experiment performed in the summer of 1999 at LANL 
is provided. The application is a high-frequency shock 
that features a component characterized by a nonlinear, 
visco-elastic material behavior. Details can be obtained 
from Reference [3]. Issues such as the variability of the 
experiment, the model-based sensitivity study, the 
statistical parameter effect analysis and the optimization 
of the numerical model are discussed in the following 
sections. 
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2.1 Experiment Setup 
 
The impact test consists of dropping from various 
heights a carriage (drop table) to which are attached a 
layer of hyper-elastic material and a steel cylinder. 
Upon impact on a concrete floor, a shock wave is 
generated that propagates to the hyper-elastic layer. It 
compresses the steel cylinder to cause elastic and 
plastic strains during a few milli-seconds. Figure 1 
illustrates the cylinder/pad/carriage assembly. A 
photograph of the test setup is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. LANL impact test assembly. 
 

 
Figure 2. LANL impact test setup. 

 
It can be observed from Figure 2 that four acceleration 
measurements are collected during each test. The input 
acceleration is measured on the top surface of the 
carriage and three output accelerations are measured 
on top of the steel cylinder. Another important feature of 
the experiment is the double bolt used to tighten the 
cylinder and hyper-foam pad to the carriage (see Figure 
2). This assembly technique generates a pre-load that 
depends on the amount of torque applied. As explained 
in the following, the pre-load value turns out to be a 
critical parameter of the numerical simulation. 
Unfortunately, it was not possible to measure the 
amount of torque applied during the experiments, 
therefore, defining an important source of uncertainty 
and variability. 
 
2.2 Purpose of the Experiment 

 
The primary purpose of this test is to infer from the 
measured input/output acceleration data the “best 
possible” material model. Figure 3 pictures the result of 
an optimization where the material model is optimized 
until the acceleration response predicted by the 
numerical model “matches” the measured data. 
 

 
Figure 3. Initial (*) and optimized (o) strain-stress 

curves of the hyper-foam pad. 
 
The difficulty of recasting this inverse problem as a 
conventional finite element model updating problem 
comes from the following facts: 
 

1) Nonlinearity such as the hyper-foam material 
and contact must be handled by defining 
appropriate “features” from the system’s 
response; 

 
2) Parameter variability and uncertainty about the 

experiment must be identified and propagated 
throughout the forward calculations; 

 
3) Prior to performing any optimization of the 

numerical model, the expensive computer 
simulations must be replaced by equivalent, 
fast running “meta-models” that capture all 
dominant parameter effects yet remain 
computationally simple. 

 

Steel Cylinder 

Hyper-foam Pad 

Tightening Bolt 

Carriage 
(Impact Table) 
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3. TEST DATA VARIABILITY 
 
Since we were concerned with environmental variability 
and we suspected that several sources of uncertainty 
would contaminate the experiment, the impact tests 
were repeated several times to collect multiple data sets 
from which the repeatability could be assessed. 
Acceleration signals measured during these tests are 
depicted in Figures 4-5. The carriage is dropped from 
an initial height of 13 inches (0.33 meters) and the 
hyper-foam pad used in this configuration is 0.25 inch 
thick (6.3 mm). A blow-up of the peak acceleration 
signals collected during ten “identical” tests at output 
sensor #1 is shown in Figure 5. This sensor is one of 
the three located on top of the steel cylinder. 
 

 
Figure 4. Accelerations measured during a 

low velocity impact on a thin layer of material. 
 

 
Figure 5. Variability of the acceleration response. 

 
Overall, it can be seen that peak values vary by 4.4% 
while the corresponding times of arrival vary by 0.6% 
only. (These percentages are defined as the ratios of 
standard deviations to mean values.) Although small, 
ignoring this variability of the peak response may result 
into predictions erroneous by several hundred g’s, 
which may yield catastrophic consequences. 

In addition to repeating the “same” test several times, 
various configurations were tested. Table 1 summarizes 
the test matrix where, essentially, the drop height and 
the foam thickness were varied. The reason why less 
data sets are available at high impact velocity is 
because these tests proved to be destructive to the 
hyper-foam material and could not be repeated to study 
the variability of the acceleration response. 
 

Table 1. Data collected with the impact testbed. 
Number of 
Data Sets 
Collected 

Low Velocity 
Impact 

(13in./0.3m) 

High Velocity 
Impact 

(155in./4.0m) 
Thin Layer 
(0.25in./6.3mm) 

 
10 Tests 

 
5 Tests 

Thick Layer 
(0.50in./12.6mm) 

 
10 Tests 

 
5 Tests 

 
More important than developing a numerical model that 
reproduces the measured response, it must be assured 
that the variability featured in Figures 4-5 is captured. 
This matters because a numerical simulation is often 
developed for studying the system’s reliability in which 
case it must be able to represent the total variability of 
the experiment and responses located in the tails of the 
statistical distributions rather than mean responses. 
 
4. CHARACTERIZATION OF THE RESPONSE 
 
It can be observed from Figures 4-5 that over a 
thousand g’s are measured on top of the impact 
cylinder, which yields large deformations in the hyper-
foam layer. The time scale also indicates that the 
associated strain rates are important. Clearly, modal 
superposition techniques would fail modeling this 
system because of the following reasons: 
 

1) Contact can not be represented efficiently from 
linear mode shapes; 

 
2) Nonlinear hyper-foam models, that possibly 

include visco-elasticity, are needed to 
represent the foam’s hardening behavior at 
high strain rates; 

 
3) Very refined meshes would be required to 

capture the frequency content well over 10,000 
Hertz. 

 
These remarks introduce the general problem of 
“feature extraction.” In other words, which quantities 
(features) can be extracted from the data sets to 
characterize the response of this nonlinear system? 
Several features have been proposed in the literature, a 
recent review of which can be found in Reference [4]. 
Among them, we cite the principal component 
(Karhunen-Loeve) decomposition; the coefficients or 
control charts obtained from fitting AR, ARX or ARMA 
models to time-domain data; the shock response 
spectrum; the spectral density function; the joint 
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probability density function of the output feature; and 
higher-order statistical moments. 
 
For analyzing the drop test experiment, we essentially 
focused on the peak acceleration and time of arrival. 
The reason is because these are the quantities of 
interest to the analyst. Actually, the impulse is so short 
in time that matching these two features is sufficient to 
capture the response’s energy content. Nevertheless, 
feature extraction is one of the most critical aspects of 
model validation for nonlinear systems. 
 
5. NUMERICAL MODELING AND ANALYSIS 
 
In an effort to match the test data, several finite element 
models were developed by varying, among other things, 
the angles of impact, the amount of bolt pre-load, the 
material’s constitutive law and the amount of friction at 
the interface between various components. Introducing 
two independent angles of impact was important for 
capturing the response’s asymmetry. (A small free-play 
in the alignment of the central collar had to be 
introduced in the numerical model to simulate the same 
time-lags of peak accelerations as the ones observed 
from test data.) Table 2 summarizes the input 
parameters that define the numerical simulation. They 
consist of physical, deterministic quantities such as the 
material model; physical, stochastic quantities (such as 
the bolt pre-load); and numerical coefficients (such as 
the bulk viscosity that controls the rate of deformation of 
the volume elements used in the discretization). 
 

Table 2. Input parameters of the model. 
Identifier Definition Unit 

1 or A Angle of Impact 1 degree 
2 or B Angle of Impact 2 degree 
3 or C Bolt Pre-load psi (N/m2) 
4 or D Material Coefficient 1 N/A 
5 or E Material Coefficient 2 N/A 
6 or F Input Scaling N/A 
7 or G Friction Coefficient N/A 
8 or H Bulk Viscosity Coefficient N/A 

 
Figure 6 illustrates the finite element model used for 
numerical simulation. The analysis program used for 
these calculations is HKS/Abaqus®-Explicit, a general-
purpose package for finite element modeling of 
nonlinear structural dynamics [5]. It features an explicit 
time integration algorithm, which is convenient when 
dealing with nonlinear material behavior, potential 
sources of impact or contact, and high frequency 
excitations. The model is composed of 963 nodes, 544 
C3D8R volume elements and two contact pairs located 
at the cylinder/pad interface and the pad/carriage 
interface. This modeling yields a total of 2,889 degrees 
of freedom composed of structural translations in three 
directions and Lagrange multipliers defined for handling 
the contact constraints. A typical analysis running on a 
single processor of the ASCI platform is executed in 
approximately 10 minutes of CPU time. (The computing 
module of the ASCI, Accelerated Strategic Computing 

Initiative, platform at LANL is a cluster of 64 Silicon 
Graphics Origin2000 nodes, each composed of 128 
R10010 chips.) 
 

 
Figure 6. 3D model of the LANL drop test. 

 
Figure 7 illustrates the total variability observed when 
the eight variables defined in Table 2 are varied. To 
analyze the variability, a fully populated factorial design 
of computer experiments is simulated where each 
variable is set either to its lower bound or to its upper 
bound and all possible combinations of input variables 
are defined. Therefore, a total of 28 = 256 numerical 
simulations must be analyzed. 
 

 
Figure 7. Full factorial design of computer 

experiments (8 variables, 2 levels). 
 
It is clear from Figures 4 and 7 that the variability of the 
numerical simulation is much greater than the variability 
observed during testing. As a result, the first step of 
test-analysis correlation consists of designing a 
“screening” experiment that must achieve the following 
two objectives. First, the range of variation of each input 
parameter must be narrowed down in a manner that 
stays consistent with test results. Second, the main 
effects of the experiment must be identified in a 
statistical manner as opposed to performing a local 
sensitivity study. 
 
It is emphasized that multi-level full factorial analyses 
would typically not be accessible for complex 
engineering applications due to the lack of time or 
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computational power. An example is the ASCI 
experiment performed at LANL for a complex threaded 
joint subjected to explosive loading [6]. To predict with 
adequate accuracy the attenuation of the shock wave 
through various joints and components of the structure, 
a detailed finite element model that counts over 6 
million degrees of freedom had to be developed and 
analyzed. The search space for this simulation is 
composed of 11 input parameters that describe the pre-
load and friction properties of the assembly. Obviously, 
achieving a full description of such input space is 
impossible. For example, a full factorial DoE featuring 
three levels only would require a total of 311 = 177,147 
simulations. For this particular application, they would 
be executed in roughly 40.4 years assuming that 504 
processors of today’s most powerful ASCI platform are 
available! This is the reason why other DoE’s are 
investigated in the following sections. The Taguchi, 
orthogonal array designs used below provide essentially 
the same information at a fraction of the computational 
requirement [7]. 
 
6. SENSITIVITY STUDY 
 
The tool commonly used for identifying the dominant 
parameter effects in structural dynamics is sensitivity 
study. We wish to identify the input parameters to which 
the output features (peak acceleration and time of 
arrival) seem to be the most sensitive. Because of the 
strong sources of nonlinearity involved, centered finite 
differences are implemented to estimate these 
sensitivities with respect to each of the eight input 
parameters. We emphasize that we are fully aware of 
the adverse mathematical implications of approximating 
discontinuous functions with finite differences but we 
choose to proceed anyway to illustrate the drawbacks of 
this popular engineering practice. 
 
A sample of the results obtained is presented in Figures 
8 and 9. Figure 8 shows the sensitivity of the peak 
acceleration when the input parameters are set to their 
upper bounds. It illustrates that the most sensitive 
parameter is the 5th one, the second material constant. 
However, a different parameter is identified as being the 
most sensitive one when the study is performed at the 
input parameter’s lower bounds (Figure 9). Since the 
“true” combination of input parameters is unknown prior 
to test-analysis correlation, drawing a conclusion 
regarding which one of these parameters should be 
kept in the analysis is not possible. 
 
This example demonstrates that performing a sensitivity 
study may not provide the analyst with any useful 
information, especially when the dynamics of the 
response is significantly nonlinear. The main reason is 
because sensitivity provides information local in nature 
(sensitivity coefficients are computed at a design point, 
in a particular direction of the search space) as opposed 
to a global assessment of the effect of each input 
parameter over the entire design space. 
 

 
Figure 8. Sensitivity of the peak acceleration 

at the parameter’s upper bounds. 
 

 
Figure 9. Sensitivity of the peak acceleration 

at the parameter’s lower bounds. 
 
Another drawback of conventional sensitivity study is 
the computational cost. In this case where finite 
differences are involved, each sensitivity coefficient 
requires one analysis at the design point pi followed with 
two analyses for each input parameter at points (pi+dpi) 
and (pi-dpi) where dpi denotes a “small” increment. 
Therefore, a total of (1 + 2x8) = 17 computer runs are 
required to generate all sensitivity coefficients at a 
single point of the design space. Estimating them during 
parameter optimization or over the entire design space 
yields prohibitive computational requirements even in 
the case of such a small model. 
 
7. STATISTICAL EFFECT ANALYSIS 
 
Instead of relying on local information, it appears more 
efficient to perform a statistical effect analysis that 
quantifies the global influence and interaction between 
input parameters over the entire design space. Here, 
we wish to identify the subset of input parameters 
responsible for producing the total variability observed 
in Figure 7. In doing so in the context of inverse 
problem solving, the focus is shifted from iteratively 
providing an optimization algorithm with accurate 
sensitivity data to designing upfront a computer 
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experiment that provides the information necessary to 
the effect analysis. 
 
First, a design of computer experiments is selected. 
Issues are the number of simulations to execute 
(depending on the time and computer resource 
available) and the avoidance of aliasing that may bias 
the subsequent statistical analysis. Alias in statistical 
modeling is caused by a too sparse sampling of the 
input space and it results in the contamination of the 
main effects investigated by higher-order effects. For 
example, a DOE designed to study linear interactions 
between input parameters and output features may 
yield erroneous conclusions because predictions are 
aliased by quadratic interactions. Design matrices used 
are typically full factorial designs, partial factorial 
designs, Taguchi orthogonal arrays or sampling 
techniques among which we cite the Latin Hypercube 
sampling and the orthogonal array sampling [7-8]. After 
defining a computer experiment, the finite element 
package is run at the corresponding combinations of 
input parameters and results are gathered for feature 
extraction. Then, statistical tests are implemented to 
assess the global contribution of each input parameter 
to the total variability observed from the computer 
simulations. A popular example is the R-square (R2) 
statistics that estimates Pierson’s correlation ratio. It is 
defined as the ratio between the variance that can be 
attributed to a given effect and the total variance of the 
data set. Mathematically, the R2 is a normalized 
quantity (between 0 and 1) calculated as 
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           (1) 

 
where yj denotes the output data feature of interest. 
Clearly, values close to one indicate a variable or an 
effect (pi

2, pi*pj, pi*pj*pk, etc.) that contributes in a 
significant manner to the total variability of the 
responses. Details about the procedure can be obtained 
from Reference [8]. 
 

 
Figure 10. R2 analysis for main, linear effects. 

 
Figure 10 represents the R2 statistics obtained for each 
one of the eight input parameters when analyzing the 
peak acceleration response at output sensors #1-3. 
Variables #1-3 (the two angles of impact and the bolt 
pre-load) are identified as being the most critical for 
predicting the total variability observed in Figure 7. 
Similarly, the analysis of coupled effects pi*pj can be 
carried out to identify the most influential cross-terms 
provided that enough data are available to minimize the 
effects of aliasing. The results of a cross-term analysis 
are presented in Figure 11. Again, coupling terms that 
feature an interaction with variable #3 (the bolt pre-load) 
are shown to be dominant. 
 

 
Figure 11. R2 analysis for quadratic interactions. 

 
The main conclusion that can be drawn from the 
statistical effect analysis is that the material model does 
not explain the variability nearly as much as the bolt 
pre-load does. It means that the original material model 
obtained by performing a static compression test on a 
sample of material is a good starting point for the 
optimization. Indeed, it can be seen from Figure 3 that 
the final, optimized model is not significantly different 
from the original model. 
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8. NUMERICAL OPTIMIZATION 
 
The final step is to infer from test data the optimal 
values of the input parameters. We briefly introduce the 
procedure followed when the investigation is restricted 
to four parameters: the two angles of impact, the bolt 
pre-load and the input scaling. Other models are shown 
in Reference [1] that provide similar or better results. 
 
8.1 Fitting Meta-models to the Simulation Data 
 
Since a smaller number of input parameters are 
retained (4 out of 8), a localized computer experiment 
can be designed to provide a better resolution in the 
area of interest. The area of interest is here defined as 
the region in the multi-dimensional search space where 
features extracted from the test data sets are located. A 
full factorial DOE matrix with 4 levels for each input 
parameter is defined which results into the analysis of 
44 = 256 designs. Then, fast running models are fit to 
the simulation data following the procedure detailed in 
Reference [1]. Equation (2) illustrates a possible model 
for the peak acceleration response at sensor #2: 
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Instead of fitting multi-dimensional polynomials, 
statistical models are preferred because in addition to 
yielding computationally efficient meta-models, they 
also provide confidence intervals that can be used for 
assessing the model’s goodness-of-fit. For example, 
each coefficient of the polynomial shown in equation (2) 
is associated with a statistics that shows how dominant 
the corresponding effect is. Statistical significance in 
this case refers to those parameters whose effect on 
the response feature variability is greater than would be 
explained by a normal distribution of noise. Table 3 
shows the +/-95% confidence interval bounds obtained 
for each coefficient of model (2). Also shown are the 
values of the F-statistics, a test that measures the 
degree of significance of each contribution kept in the 
model [9]. Typically, a value of the F-statistics smaller 
than 5% indicates that the corresponding model term is 
significant. It can be concluded from Table 3 that the 
statistical model (2) exhibits a remarkable fit to the 

simulation data defined by our 4-variable, 4-level full 
factorial DOE. 
 

Table 3. Statistical significance of model (2). 
Effect 
Kept 

-95% CI 
Bound 

Value 
Used 

+95% CI 
Bound 

F-test 
Value 

1 -1,597.6 -1,538.2 -1,478.8 0.01%
a1 11.1 43.6 76.1 0.43%
a2 208.5 288.4 368.3 0.01%

Pbolt 2.3 2.4 2.6 0.01%
sI 2,351.0 2,552.8 2,754.6 0.01%
a1

2 -436.5 -391.3 -346.1 0.01%
a2

2 -352.3 -307.1 -261.9 0.01%
Pbolt

2 -0.0008 -0.0006 -0.0004 0.01%
a1*a2 629.5 665.7 701.9 0.01%

a2*Pbolt -0.6 -0.5 -0.4 0.01%
a2*sI -633.4 -452.4 -271.5 0.01%

Pbolt*sI 1.1 1.5 1.9 0.01%
 
It is emphasized that equation (2) defines a family of 
models that could be re-sampled to account for omitted 
sources of uncertainty (round-off errors, environmental 
variability, etc.). Table 3 shows in column 3 the values 
used for defining our model in equation (2). However, 
any other model synthesized from coefficient values 
randomly selected within their [-95%; +95%] confidence 
intervals would also be consistent with the data sets 
provided by the DOE. Re-sampling this model would 
essentially mean that decisions are based on properties 
of ensembles rather than a single model. This can be 
exploited advantageously to include omitted sources of 
variability or to identify areas of the design space that 
require further refinement. Optimizing the statistical 
significance of each individual effect contribution may 
be as important than maximizing the overall goodness-
of-fit to the experimental or computer data [10]. 
 
8.2 Optimization of Input Parameters 
 
Figure 12 illustrates a 2D response surface obtained 
from equation (2). The mean acceleration response 
obtained from the data collected at output sensor #2 is 
shown as a star. A straightforward optimization provides 
the optimal values of the input parameters. In this case, 
a pre-load equal to 200 psi (1.38 x 106 N/m2) is 
obtained together with an impact angle equal to 0.7 
degrees. Note that such an approach provides an 
optimized model capable of reproducing the mean 
response obtained from test data. It does not guarantee 
that the variance or other higher statistical moments are 
captured. Other optimization strategies are discussed in 
Reference [1] to address this important issue. In 
particular, it is shown that the optimized model can 
reproduce the variability measured during the 
experiments. This demonstrates that the adequate 
sources of variability and correct statistical distributions 
of input parameters have been included in our model. 
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Figure 12. Optimization of the meta-model. 

 
Obviously, the value of 200 psi for the bolt pre-load 
could not be verified and it was likely to have varied 
somewhat from test to test. The values of (0.0; 0.7) 
degrees for the impact angles were confirmed by an 
independent investigation. The measured acceleration 
signals were integrated numerically to provide the time-
history of displacement at three locations on top of the 
steel cylinder. Then, fitting a plane to these data did 
confirm that the rotation was located around the second 
axis with an approximate value of 0.7 degrees. 
 
8.3 Independent Validation of the Model 
 
The most critical issue in model validation is to assess 
the domain of predictability of the optimized model. Too 
often, a model will not be predictive away from the 
dynamic range spanned by the test data used for 
numerical optimization or model updating. It may be 
because the physics of the system is not understood; 
the model form is incorrect; or the simulation does not 
capture the total variability. However, this issue is 
critical because the purpose of numerical models is to 
make predictions in situations for which test data are 
not available, for example, for predicting rare or 
catastrophic events. Practices generally encountered in 
model validation are to: 
 

1) Perform independent optimizations using, for 
example, various features and metrics, and 
assess the consistency between the models 
obtained; 

 
2) Validate the predictive quality of the numerical 

model using test data sets not used during the 
optimization. 

 
With the impact experiment, two independent features 
(peak acceleration and time of arrival) are optimized for 
each sensor. It has been verified that consistent models 
are obtained when the correlation between test data 
and model predictions is optimized based on 
independent features. Obtaining consistent models is 
nevertheless not sufficient because the optimized 
models could all be wrong. Data sets from our test 
matrix (Table 1) are used for validating the model’s 

predictions in configurations other than the one used 
during statistical effect analysis and model updating. 
Preliminary results on the thick pad/low impact velocity 
configuration tend to confirm the conclusion presented 
in Reference [3]. That is, computer simulations with the 
previously optimized input parameters reproduce the 
test data of a different setup with very good accuracy. 
 
9. SOFTWARE INTEGRATION 
 
In this section, we emphasize some of the key points 
contributed to by Amanda Wilson during the summer of 
2000 in terms of software development and integration. 
The computing environment and the interaction 
between various software is briefly described. 
 
As mentioned previously, the modeling and analysis 
package used for this research is Abaqus™. Generating 
and processing efficiently the large amount of data from 
a DoE requires that multiple analyses be executed with 
minimum involvement from the analyst. To fulfill this 
goal, drivers are written with the language Python® [11]. 
The Python® scripts parameterize Abaqus™ input decks 
and run multiple analyses without having to type in the 
commands one by one. Generating the Python® scripts 
themselves is performed via a user interface in 
MATLAB™. Essentially, all pre and post-processing are 
handled within MATLAB™ as much as possible. 
 
An illustration is provided below. The hyper-elastic 
constitutive model of an Abaqus™ input deck can, for 
example, be defined through the following commands: 
 

(1) *HYPERELASTIC, POLYNOMIAL, N=1 
(2) 0.6, 1.7, 0.8, 20.0 

 
where the key word “*HYPERELASTIC” refers to a 
particular model form and the coefficients provided on 
the second line define the material. A parameterization 
of the first two variables can be achieved with: 
 

(1) *PARAMETER 
(2) var1 = 0.6 
(3) var2 = 1.7 
(4) *HYPERELASTIC, POLYNOMIAL, N=1 
(5) <var1>, <var2>, 0.8, 20.0 

 
Each Abaqus™ input deck of the DoE would typically be 
assigned different values for variables 1 and 2 and the 
role of the Python® script file is to set up the multiple 
input decks according to the analyst’s instructions. For 
example, defining two analyses at the design points 
(0.6; 1.7) and (0.8; 2.3) can be handled by the following 
Python® script file: 
 
(1) DoE = parStudy(par=['var1','var2']) 
(2) DoE.define(DISCRETE, par='var1', 
(3) domain=(0.6,0.8)) 
(4) DoE.define(DISCRETE, par='var2', 
(5) domain=(1.7,2.3)) 
(6) DoE.sample(INTERVAL, par='var1', 
(7) interval=1) 
(8) DoE.sample(INTERVAL, par='var2', 
(9) interval=1) 
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(10) DoE.combine(TUPLE) 
(11) DoE.generate(template='abaqus.inp') 
(12) exit() 

 
where file “abaqus.inp” is a generic Abaqus™ input 
deck that contains the problem definition. The generic 
input deck must be parameterized with variables 1 and 
2 identified by “<var1>” and “<var2>”, respectively, as 
shown before. A 2-level factorial analysis is obtained by 
changing the key word “TUPLE” on line 10 into “MESH“. 
Then, a total of four models are analyzed at the design 
points (0.6; 1.7), (0.6; 2.3), (0.8; 1.7) and (0.8; 2.3) for 
variables 1 and 2. Parameters can also be defined as 
strings of alpha-numeric characters which is convenient 
for varying element types, contact conditions, solver 
algorithms, etc. 
 
After the parametric Abaqus™ input decks and DoE’s 
design points have been defined, the Python® script is 
linked to Abaqus™ and executed on one of the available 
computing platforms. The multiple binary result files are 
gathered by another MATLAB™ function with very little 
involvement from the analyst. According to the output 
requested by the user, the MATLAB™ function imports, 
compiles and executes the adequate Abaqus™ utilities 
used to convert and extract the results. The MATLAB™ 
environment then makes it easy to extract features from 
time series, implement the statistical effect analysis and 
optimize meta-models. Fitting statistical models to the 
DoE’s output is currently performed with the Design-
Expert® software [9] and it has not yet been interfaced 
with our MATLAB™ library of functions. 
 
10. CONCLUSION 
 
An overall presentation is given of the on-going 
research pursued at Los Alamos National Laboratory for 
the validation of numerical simulations for engineering 
structural dynamics. An impact experiment used to 
develop the model validation methodology is presented. 
Design of experiments techniques are implemented to 
perform parametric studies using the numerical model 
and improve its predictive quality. An application of this 
methodology to a more complex engineering simulation 
is discussed in a companion paper [6] presented at the 
IMAC-XIX conference. 
 
Future work includes the development of a complete 
array of features or test-analysis correlation metrics; the 
comparison of different sampling techniques; and the 
implementation of statistical model updating procedures 

capable of refining estimates of the input parameter’s 
variance and higher-order statistical moments. 
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