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ABSTRACT 

An alternative to the theory of probability is applied to the problem of assessing the 
robustness, to parametric sources of uncertainty, of the correlation between measurements and 
computer simulations. The uncertainty analysis relies on the theory of information-gap, which 
models the clustering of uncertain events in families of nested sets instead of assuming a 
probability structure. The system investigated is the propagation of a transient impact through 
a layer of hyper-elastic material. The two sources of non-linearity are (1) the softening of the 
constitutive law representing the hyper-elastic material and (2) the contact dynamics at the 
interface between metallic and crushable materials. Information-gap models of uncertainty are 
developed to represent uncertainty in the knowledge of the model’s parameters and in the 
form of the model itself. Although computationally expensive, it is demonstrated that 
information-gap reasoning can greatly enhance our understanding of a system when the 
theory of probability cannot be applied due to insufficient information. 
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1. INTRODUCTION 

Relying on numerical simulations, as opposed to field measurements, to analyze the 
structural response of complex systems requires that the predictive accuracy of the models be 
assessed. This activity is generally known as “model validation” [1]. Model validation 
requires the comparison of model predictions with test measurements at several points of the 
design / operational space. For example, numerical models of flutter must be validated for 
various combinations of fluid velocity and wing angle-of-attack. Because validation 
experiments become expensive when the system investigated is complex, only a few data sets 
are generally available. This lack of adequate representation of the design / operational space 
makes it questionable whether statistical models of predictive accuracy can be developed. 
 

In this work, we focus on one aspect of model validation that consists in assessing the 
robustness of a decision to uncertainty. In this context, “decision” refers to assessing the 
accuracy of predictions and verifying that the accuracy is adequate for the purpose intended. 
Likewise, “uncertainty” can represent experimental variability, variability of the model’s 
parameters but also inappropriate modeling rules in regions of the design / operational space 
where experiments are not available. 
 

An alternative to the theory of probability is applied to the problem of assessing the 
robustness of model predictions to sources of uncertainty. The analysis technique is based on 
the theory of information-gap, which models the clustering of uncertain events in embedded 
convex sets instead of assuming a probability structure [2]. Unlike other theories developed to 
represent uncertainty, information-gap does not assume probability density functions (which 
the theory of probability does) or membership functions (which fuzzy logic does). It is 
therefore appropriate in cases where limited data sets are available. The main disadvantage of 
information-gap is that the efficiency of sampling techniques cannot be exploited because no 
probability structure is assumed. Instead, the robustness of a decision with respect to 
uncertainty is studied by solving a sequence of optimization problems, which becomes 
computationally expensive as the number of decision and uncertainty variables increases. The 
concepts are illustrated with the propagation of a transient impact through a layer of hyper-
elastic material [3]. The numerical model includes a softening of the hyper-elastic material’s 
constitutive law and contact dynamics at the interface between metallic and crushable 
materials. Although computationally expensive, it is demonstrated that the information-gap 
reasoning can greatly enhance our understanding of a moderately complex system when the 
theory of probability cannot be applied. 

2. UNCERTAINTY AND ITS EFFECT ON COMMON MODELING ACTIVITIES 

Uncertainty plays a central role in many activities of modeling and simulation. Clearly, 
conceptual ambiguity and numerical ambiguity are the result of imprecision or lack of 
information, which both translate into uncertainty. Epistemic uncertainty occurs in modeling 
activities when the laws that govern the evolution of a system are not known with absolute 
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certainty. In fact, it may be stated that “Uncertainty, rather than being an accident of the 
scientific method, is rather its very nature.” (Adapted from a quote of Andrea Saltelli in 
Reference [4].) We start by discussing the effect of uncertainty on common modeling 
activities. The discussion also introduces the notations used throughout this paper. 
 
2.1 Modeling 
 

The numerical model we seek to develop using the finite element method (or any other 
modeling technique) provides a non-linear mapping between the output features y and the 
model’s decision variables q. The output features generally represent the physical quantities 
predicted by the model, such as mean stress, peak acceleration, resonant frequencies, etc. The 
decision variables represent modeling parameters such as those of the constitutive law, design 
parameters such as the thickness of a shell thickness, or numerical parameters such as friction 
coefficients. The model is simply denoted by the equation y=M(q). 
 

The selection of q entails both the identification of the model’s parameter values as well 
as the choice between conceptually distinct classes of models. A model specified by q is 
validated when it can be asserted with confidence that q accurately represents the physical 
properties of the system throughout the design domain. 
 

Note that the variables q are not restricted to numerical parameters or design variables. 
Included in the set of decision variables q can be variables that might represent a choice 
between different modeling rules. For example, one of the variables qk could represent a 
choice between an axi-symmetric model or a three dimensional model, if both are consistent 
with the intended application. This allows for a broad definition of the decision variables q. 
 
2.2 Uncertainty 
 

In addition to the decision variables q, we deal with uncertain variables u represented by 
a model of uncertainty denoted by U(u0;a): 
 

( );auU  uM(q;u),   y 0∈=  (1)
 

The unknown u may represent a damping mechanism that we are not aware of, a 
coefficient of strain-rate dependency, a non-linear stiffness parameter, etc. We may have 
information about the uncertain variables u, however this information may be quite 
fragmentary. We may not even know the identity of some of these uncertain variables. Or, we 
may be unsure whether a given variable should be categorized as a decision variable q or an 
uncertain variable u. This expresses the fact that the actual sources of uncertainty and their 
influence on the performance indicators y are incompletely known. 
 

The model of uncertainty U(u0;a) possesses three distinct attributes. First, a theory must 
be selected to represent the uncertainty mathematically. In most engineering sciences, 
probability is the theory of choice. In this case, the uncertainty model U(u0;a) describes the 
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frequency of occurrence of particular events u. Other models of uncertainty might include the 
theory of plausibility and belief of Dempster and Shaffer [5], intervals or fuzzy logic [6]. 
 

The second attribute of the uncertainty model U(u0;a) is u0, which represents everything 
that might be known about the quantities u. The third attribute is the parameter a, which 
represents the degree of uncertainty. In the context of a probabilistic model of uncertainty, for 
example, U(u0;a) represents the set of possible values of a random variable u, knowing that a 
measurement of the variable has provided the value u0 with an uncertainty level equal to a. 
The uncertainty level a could represent the accuracy of the measurement system. 
 
2.3 Decision-making 
 

The main algorithmic difficulty of decision-making is to propagate the uncertainty u 
through the model y=M(q;u) and through a decision-making criterion denoted by R(q;u). The 
criterion R(q;u) generally depends on the results y of the finite element analysis. Without loss 
of generality, we will assume that the decision is accepted—or the performance of the system 
is deemed acceptable—if the following inequality is satisfied: 
 

CRu)R(q ≤;  (2)
 
where RC represents a user-defined threshold of performance. 
 

For example, the decision-making criterion R(q;u) could represent the assessment of 
whether or not a structural component can survive an applied load. The decision takes the 
form of an inequality such as y<yMAX where y represents the peak stress experienced by the 
component and yMAX represents a user-defined, maximum allowable level such as the 
material’s yield stress. With the notation previously introduced, R(q;u) defines the peak stress 
response, R(q;u)=max(y), while the threshold RC represents the allowable stress, RC=yMAX. 
 

The numerical model y=M(q;u) provides the value of the peak stress y for a given design 
or material q. The uncertainty u might represent the lack-of-knowledge about the loading that 
the structural component will actually experience once the system is deployed in the field. 
 
2.4 Robustness or the Assessment of Immunity to Uncertainty 
 

One of the main difficulties in decision-making is that uncertainty can make decisions 
ambiguous. In the problem of system identification, for example, more than one model 
generally fit the data equally well. One model may be better than the others but we cannot 
know which. Ambiguity originates from the fact that the uncertain variables u interact with 
the decision variables q and thereby preserve the potential for decision ambiguity. 
 

However, if a decision is reached that happens to be highly insensitive to variations of the 
uncertain variables, then the validity of this decision is established with confidence. By 
establishing the immunity of the decision variables q to the uncertain variables u, we 
ameliorate the interaction between the latter and the former and thereby reduce the ambiguity 
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in the decision-making process. In the context of model validation, for example, this 
“factoring out” of the uncertain variables strengthens the confidence in the validity of the 
model throughout the design domain. The assessment of immunity of a decision to 
uncertainty is referred to as robustness in the remainder. 

3. SCOPE OF THIS WORK 

This work addresses the problem of calibrating a numerical model to make it reproduce 
the test data to a given level of accuracy. In light of the above discussion, uncertainty must be 
accounted for and the robustness of the calibration to that uncertainty must be established. 
That is, we wish to provide an answer to the question: How much uncertainty can be 
tolerated without having to change the model? If the robustness to uncertainty is great, then 
the ambiguity is low, since the data could vary greatly without inducing a different model. 
 

Our analysis departs from the state-of-the-art in finite element model updating [7] in two 
main ways. First, non-linear finite element models are developed to represent fast, transient 
events. Some of the materials involved exhibit a softening behavior and they cannot be 
represented with a linear constitutive relation. In addition, the dynamical phenomenon of 
interest is high-frequency wave propagation. It occurs in less than one millisecond and cannot 
be represented using a truncated basis of low-frequency mode shapes. 
 

Second, due to our fragmentary information and incomplete understanding of the 
processes involved, uncertainty cannot be represented with the theory of probability. Not 
being able to rely on probabilities implies that uncertainty propagation cannot take advantage 
of efficient sampling techniques. Therefore, the computational cost of the method proposed 
for non-probabilistic uncertainty propagation should not come as a surprise. 

4. INFORMATION-GAP MODELING OF UNCERTAINTY 

Models of information-gap are briefly introduced to represent a generic uncertainty. A 
mathematical formulation is then proposed to investigate the robustness of a decision to 
uncertainty. The application to test-analysis correlation is discussed in sections 5 and 7. 
 
4.1 Information-gap Modeling 
 

We start by briefly explaining how an information-gap model (IGM) of uncertainty is 
constructed. An IGM is simply a collection of nested sets of uncertain events. The “size” of 
these sets is controlled by the horizon-of-uncertainty parameter a. The sets, denoted U(u0;a), 
are nested so that a<a’ means that U(u0;a) is included in U(u0;a’). In other words, the range 
of uncertain events increases as the uncertainty parameter a increases. For example, 
describing a random variable X with an IGM could consist of establishing nested intervals 
within which X varies around a nominal value denoted by X0: 
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{ } 0aaXXX;a)U(X >≤−=          ,00  (3)
 

Other examples of IGM are provided in References [2, 8]. The important point is that no 
probability structure is assumed. Instead, information-gap theory hypothesizes the structure 
of the uncertainty space and dictates how uncertain events cluster around one another, but no 
measure functions are posited. 
 

It is important to realize that an IGM is much less restrictive than postulating the 
frequency of occurrence of uncertain events in terms of a probability density function or 
postulating a possibility of occurrence in terms of a family of fuzzy membership functions. In 
fact, an IMG includes all possible representations of uncertainty—that is, all possible 
probability density or membership functions—consistent with the constraint introduced by the 
horizon-of-uncertainty parameter a. The theory of information-gap is therefore well suited to 
the cases of extreme uncertainty or cases where no evidence is available to suggest the choice 
of a particular probability structure. 
 
4.2 Robustness to Uncertainty 
 

In section 2.3, decision-making has symbolically been denoted “R(q;u)<RC” where 
R(q;u) denotes the performance or decision-making criterion and RC represents a user-defined 
threshold of performance. The value of the performance level RC is not chosen a priori. As in 
all information-gap analyses, the performance level RC is embroiled in a basic trade-off and its 
value is chosen in light of the resolution of that trade-off. 
 

The basic decision function of information-gap decision theory is the robustness a*. The 
robustness of decision q is the greatest value of the uncertainty parameter a at which the 
performance predicted by the model is never worse than RC. The robustness is therefore 
formally defined as an optimization problem: 
 

{ }C
;a)oU(uua

RuqRuqRa ≤=
∈≥

);();(
0

*     maxArgmax  
(4)

 
The significance of the robustness function is that it assesses the degree of variation of 

the uncertain u that does not jeopardize the performance of the system. If the robustness of 
decision q is large, then the performance of the corresponding model is immune to variations 
of the unknown quantities u. On the other hand, if a* is small, then even very small 
fluctuations of the uncertain quantities u endanger the performance. At low robustness, 
decisions based on the model are likely to be questionable due to the influence of variability 
and modeling error. 

5. SHOCK PROPAGATION THROUGH A HYPER-ELASTIC MATERIAL 

The application of interest is a high-frequency shock performed in the Summer of 1999 at 
Los Alamos National Laboratory. The experiment was designed to study the propagation of a 
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shock wave through a non-linear, visco-elastic material. References [3, 9] provide details 
about the experiment, the data collected and the statistical effect and parameter calibration 
analyses. Testing and modeling activities are briefly summarized below for completeness. 
 
5.1 Impact Test Setup 
 

The test consists of dropping from various heights a carriage (drop table) on which are 
mounted a layer of hyper-elastic material and a 10.77 kg steel cylinder. Upon impact on a 
concrete floor, a shock wave is generated that propagates through the hyper-elastic material. 
The heavy steel cylinder compresses the hyper-elastic pad and causes elastic and plastic 
strains during a few milliseconds. A photograph of the setup is shown in Figure 1-a. 
 

 
(a) Photograph of the drop test setup.  (b) Illustration of the finite element mesh. 

Figure 1. Drop test experiment and instrumentation. 
 

Four acceleration measurements were collected during each test. One acceleration signal 
was measured on the top surface of the carriage and three acceleration signals were measured 
on top of the steel cylinder. The former is referred to as the “input” acceleration signal and the 
latter are referred to as the “output” acceleration signals at sensors 1, 2 and 3. 
 

The features y that we would like the numerical model to reproduce are defined as the 
peak acceleration at sensor 2 and the corresponding time-of-arrival, that is, the time it takes 
the shock wave to travel from the drop table to sensor 2 on top of the steel cylinder. These 
two features are denoted as PAC and TOA, respectively. The impulse is so short in time—and 
the shape of the pulse can be reproduced by a half-sine wave—that matching these two 
features is sufficient to capture the response’s energy content. 
 
5.2 Finite Element Modeling 
 

Figure 1-b illustrates the finite element model developed for numerical simulation. The 
analysis program used is HKS/Abaqus®-Explicit, a general-purpose package for finite 
element modeling of non-linear structural dynamics [10]. It features an explicit time 
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integration algorithm, which is convenient when dealing with non-linear material behavior, 
contact dynamics and high frequency excitation. The model shown in Figure 1-b defines 963 
nodes, 544 volume elements and two contact pairs located at the cylinder/pad interface and 
the pad/carriage interface. It yields a total of 2,889 degrees of freedom composed of structural 
translations in the three directions and Lagrange multipliers defined for handling the contact 
constraints. An analysis running on a typical single-processor workstation is executed in 
approximately 10 minutes of CPU time. 
 

The finite element simulation had to be parameterized in an effort to capture the material 
variability, the experimental variability and other sources of uncertainty. Because it was 
observed during the physical experiments that the drop table did not always hit the floor 
perfectly horizontally, two tilt angles t1 and t2 were introduced in the numerical simulation. 
Another source of variability was the torque PB applied to the tightening bolts that held the 
assembly together on the carriage. A small scaling variation sI of the measured impulse was 
also allowed to account for potential sensor calibration errors and other systematic bias 
introduced by data decimating and filtering. Other input parameters are not included in this 
analysis because previous work has demonstrated that these additional parameters do not 
explain the observed variability [3, 9]. 
 

In summary, the physical experiments as well as the finite element model define a non-
linear mapping y=M(q;u) between the four decision variables q=(t1;t2;PB;sI) and two output 
features y=(PAC;TOA). To clarify a potential notation ambiguity, it is emphasized that the 
quadruplet (t1;t2;PB;sI) that has been denoted by q could also be denoted by the symbol u. The 
distinction between the two notations comes from the type of uncertainty model adopted. 
 
5.3 Test-analysis Correlation 
 

The mapping y=M(q;u) can either be evaluated experimentally by performing a test, 
which is expensive and time-consuming, or it can be simulated in a few minutes with the 
finite element model. To take advantage, however, of the modeling capability, we must assess 
the predictive accuracy of the model and decide, among many possible choices of models, 
which one provides the best performance. 
 

Each possible model is defined by a particular choice of the decision variable quadruplet 
q=(t1;t2;PB;sI). Clearly, what makes this problem non-trivial is the fact that the quadruplet q is 
unknown and that this uncertainty cannot be modeled probabilistically. 
 

To solve the problem, the concepts developed in section 4 are applied to the correlation 
between test measurements and model predictions. In this context, the performance criterion 
R(q;u) is defined in terms of the following test-analysis correlation metric: 
 

( ) ( )0101 )()();( qqWqqqeWqeuqR qq
T

ee
T −−+= −−  (5)

 
where e(q)=yTest-y(q) represent the distance between measured and predicted (PAC;TOA) 
features and q0 denotes the nominal value of the quadruplet (t1;t2;PB;sI). The matrices Wee and 
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Wqq are weighting coefficients. Note that the variables u that convey the uncertainty do not 
appear explicitly in equation (5); they are defined in sections 6 and 7. 
 

Decision-making consists in identifying the models—that is, selecting the variables 
(t1;t2;PB;sI) of the finite element simulation—that provide the best possible correlation R(q;u) 
between measurements and predictions, given the sources of uncertainty. The threshold of 
acceptable performance RC then represents the maximum acceptable prediction error, for 
example, RC=20%. A model is “good enough” or “acceptable” if it satisfies the inequality (2). 
In other words, RC specifies the level of satisficing for calibration of the model. While the 
fidelity function R(q;u) depends upon the uncertain or unknown quantities u, it will turn out 
that this is not an impediment to the analysis. On the contrary, it is the prime mover of the 
information-gap robustness analysis discussed in section 7. 

6. IMPLEMENTATION OF THE ROBUSTNESS ANALYSIS 

During the physical experiments, the values of the four variables (t1;t2;PB;sI) were neither 
controlled nor measured, making it difficult to represent their variability with a probability 
distribution. It was nevertheless assessed that the uncontrolled variation of these quantities 
during the tests caused a significant variability of the measured acceleration signals and their 
features PAC and TOA. While (t1;t2;PB;sI) were considered controllable decision variables q 
in section 5, we now regard them as unknown and uncontrollable entities u. This lack-of-
knowledge is represented by a model of information-gap. 
 

The worst case would be to state that the variation of parameters (t1;t2;PB;sI) is unknown 
within specific bounds dictated by physical constraints. The results of this analysis are 
presented in section 7. To discuss the implementation of a robustness analysis, suffices to say 
that the unknown u=(t1;t2;PB;sI) belongs to an information-gap model represented by a family 
of nested sets U(u0;a) where a>0. As explained in section 4, a generic robustness analysis 
estimates the horizon of uncertainty a* that guarantees an acceptable performance. Here, we 
seek to identify the models that provide a test-analysis correlation metric R(q;u) smaller than 
the acceptance threshold of RC=20%. 
 

The decision-making procedure is conceptually illustrated in Figure 2. Figure 2-a shows 
that, at each horizon of uncertainty ak, an optimization problem must be solved that provides 
the worst possible performance R*(ak) within the set U(u0;ak): 
 

);()(
);(

* uqRaR

k
aouUu

k max
∈

=  
(6)

 
Focusing on the worst possible test-analysis correlation metric R*(ak) at each level of 

uncertainty ak provides an assessment of the adverse effect of uncertainty on performance. 
Decisions—or, in our case, models—that feature a high robustness a* are preferred because 
they minimize the potentially adverse effect of uncertainty. 
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For the application, the optimization searches for the model that yields the worst possible 
test-analysis correlation metric R(q;u) at each uncertainty level. The uncertainty levels ak are 
pre-defined by the user, depending on how many optimization problems can be solved given 
the available computational resource. A gradient-based BFGS algorithm is wrapped around 
the HKS/Abaqus® finite element package through a Matlab™ interface. This implementation 
is feasible because the algorithm optimizes only four variables and requires a relatively small 
number of finite element calculations to converge, typically less than 60. To solve a more 
complicated optimization problem, it may become advantageous to replace the finite element 
model by a trained, fast-running surrogate as suggested in Reference [1]. 
 

 

(a) Info-gap robustness calculation.   (b) Inference of the allowable uncertainty. 
Figure 2. Conceptual information-gap analysis. 

 
The sequence of points {ak;R*(ak)} of Figure 2-a is then used to approximate the 

continuous performance curve R*(a) shown in Figure 2-b. In figure 2-a, information flows 
from the vertical axis (a) to the horizontal axis (R*). Decision-making in Figure 2-b reverses 
the flow of information. For the target performance RC, the tolerable horizon of uncertainty a* 
is obtained by reading the performance curve R*(a). The shaded area in Figure 2-b represents 
the acceptable operating region. If the analyst is only interested in estimating a*, 
reconstructing the entire curve R*(a) is not necessary and efficient search strategies can be 
devised that take advantage of its proven monotonic form [11]. 

7. RESULTS OF THE ROBUSTNESS ANALYSIS 

As stated previously, the analysis assumes that no evidence is available to suggest that a 
particular probability structure might be appropriate to represent the uncertain parameters 
(t1;t2;PB;sI). Furthermore, the analysts are not willing to make assumptions. In this context, all 
that can be stated is that the parameters t1, t2, PB and sI vary within intervals. The upper and 
lower bounds of these intervals are derived from physical observation. For example, the 
preload PB is always positive and it cannot exceed a limit determined by taking measurements 
on the system after testing was completed. Similarly, the drop table’s guiding system imposes 

Performance
Metric (R*) 

Uncertainty 
Level (a) 

ak 

R*(ak) 

Results of the 
optimization (6) 

Performance
Metric (R*) 

Uncertainty
Level (a) 

Target 
Performance RC 

Tolerable 
Uncertainty 

a* 

Curve 
R*(a) 
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physical constraints on the angles t1 and t2 and it is determined that no more than a 2-degree 
tilt could possibly have occurred. Note that such information is extremely sparse compared to 
probability information. Nevertheless, it can be modeled with models of information-gap. 
 
7.1 Studying the Sensitivity of Robustness to Each Individual Variable 
 

The analysis starts with the definition of four information-gap uncertainty levels a1-a4, 
one for each uncertainty variable t1, t2, PB and sI. The robustness analysis focuses on one 
variable uk at a time, with the other three kept constant and equal to their nominal values. This 
approach lets us study the effect of each uncertainty variable independently from the others. 
The performance criterion R(q;u) is the test-analysis correlation metric defined in equation 
(5). The intervals of uncertainty U(uk

0;ak) are defined as follows: 
 

{ } 0,);( 00 >≤−≤= +−
kkkkkkkkkk auauuuauauU           (7)

 
where the lower and upper limits uk

– and uk
+ represent the minimum and maximum bounds 

that the parameter uk cannot exceed. The symbol uk denotes one of the four unknowns 
(t1;t2;PB;sI) and uk

0 represents an assumed nominal value. The definition (7) implies that the 
uncertainty parameter ak is scaled between zero and one. Thus, the value ak=1 represents a 
total lack-of-knowledge. Table 1 defines the nominal values uk

0 and bounds uk
– and uk

+. 
 

Table 1. Definition of the input parameters of the finite element model. 
Symbol Definition Nominal 

Value uk
0 

Lower 
Bounds uk

– 
Upper 

Bounds uk
+ 

Units 

t1 First tilt angle 0.50 0.00 2.00 Degree 
t2 Second tilt angle 0.50 0.00 2.00 Degree 
PB Bolt preload 1.72 0.00 3.45 MPa 
sI Input scaling 1.00 0.90 1.10 Unit-less 

 
Figure 3 shows the four partial robustness curves ak-versus-R*(ak), from which the 

optimal solutions ak
* can be read directly. The reason why the worst test-analysis correlation 

R*(ak) increases when the uncertainty level ak increases is because R*(ak) is the solution of a 
maximization problem (6). For larger horizon-of-uncertainty parameters ak, the search space 
U(uk

0;ak) also becomes larger and the solution R*(ak) can only increase. 
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Figure 3. Partial robustness versus information-gap uncertainty. 

 
It can be observed that the most adverse effects of uncertainty are associated with the 

parameters PB (bolt preload) and sI (impulse scaling). Uncertainty in the preload PB has the 
potential to deteriorate the original 14.5% error (at a=0) to more than 37% (at a=1). 
Uncertainty in the tilt angles, on the other hand, produces little-to-no deterioration of the 
correlation. From this analysis, we learn that it is not critical during an experiment to attempt 
to control or measure the tilt angles. It is also learned that no more than a*=24% uncertainty 
can be tolerated in the knowledge of the bolt preload PB to guarantee that the test-analysis 
correlation error remains acceptable, that is, less than RC=20%. 
 
7.2 Studying the Robustness-opportunity Trade-off for Cost-benefit Analysis 
 

The results presented in Figure 3 cannot be used to evaluate the robustness function, as 
shown schematically in Figure 2, because each of the four uncertain variables is studied 
separately. A second analysis is therefore performed where the unknowns u are calibrated 
simultaneously as they should be in a rigorous robustness analysis. At each uncertainty level, 
the following two constrained optimization problems are solved: 
 

);()();()(
);(

*

);(

* uqRbRuqRaR

k
aouUu

k

k
aouUu

k min                  max
∈∈

==  
(8)

 
On the left of equation (8), searching for the worst test-analysis correlation error at each 

uncertainty level provides the robustness function a*. On the right of equation (8), searching 

RC=20%

a*=0.24 
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for the best possible error provides what is referred to in Reference [2] as the opportunity 
function b*. Opportunity assesses the potentially beneficial effect of uncertainty. Whereas 
one always attempts to maximize the robustness a* of a decision, the opportunity b* is a 
quantity that is minimized because it provides the least uncertainty that guarantees a given 
performance. In both cases, the uncertainty is represented by an IGM where each unknown 
varies within an interval whose size depends on the horizon-of-uncertainty parameter ak: 
 

( ){ } 0,;;;);( 0
21

0 >≤−≤== +−
kkkIBk auauuuasPttuauU         (9)

 
At any given uncertainty level ak or bk, the intervals defined by the family of nested sets 

provide the constraints for the optimization problems (8). Figure 4 illustrates the results of the 
robustness and opportunity analyses. It is emphasized that each point in Figure 4 is the result 
of an optimization problem. 
 

Cost-benefit analysis stems from discussing the trade-off between the robustness a* and 
opportunity b* functions. The first information conveyed in Figure 4 is that no more than 
a*=17% uncertainty must be tolerated to guarantee an acceptable performance, meaning that 
the finite element simulation predicts the physical test with less than RC=20% error. 
Controlling the uncertainty to no more than 17% during the physical experiments and the 
development of the numerical model surely comes at a significant cost. For example, this 
constraint can be translated into a requirement of the accuracy needed to measure the torque 
applied by the tightening bolts so that the estimation of preload is known within 17%. 
 

 
Figure 4. Robustness and opportunity versus information-gap uncertainty. 

 

RC=20%

a*=0.17 

b*=0.40 

RC=28%
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Figure 4 also shows that, at the 17% uncertainty level, the simulation would still provide, 
in the best possible case, at least 8% test-analysis correlation error. The 8% error corresponds 
to 17% uncertainty on the opportunity curve. Hence, Figure 4 conveys information regarding 
the potential benefits of the uncertainty. For example, one could ask what it would take to 
obtain a finite element model that provides the possibility of producing a “perfect” prediction 
of the physical test (that is, less than 1% error). The answer is, again, provided by the 
opportunity function: b*=40%. On the other hand, 40% uncertainty only guarantees RC=28% 
test-analysis correlation error. Weighting the cost of controlling no more than 17% 
uncertainty (with the benefit of guaranteeing no more than RC=20% error) against the lesser 
cost of allowing up to 40% uncertainty (with the risk of deteriorating the test-analysis 
correlation to 28% error) is the essence of decision-making. 

CONCLUSION 

The quantification and propagation of uncertainty through a linear model has been the 
subject of extensive studies in many sciences, especially in the context of probability theory. 
The relationship between uncertainty and non-linear dynamics is not well understood, the 
main reason being the difficulty in analyzing non-linear systems. 
 

This publication illustrates how information-gap models can be defined and analyzed for 
studying the propagation of uncertainty through a non-linear finite element simulation without 
relying on probabilities. We concentrate on establishing the robustness-to-uncertainty of a 
numerical model in reproducing the experimental measurements. This work demonstrates that 
model assessment under uncertainty can be solved without relying on the theory of 
probability. Analysts are therefore offered a practical alternative for situations where only 
sparse data are available or only limited testing is possible. 
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