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ABSTRACT 
This chapter offers a brief overview of the 

technology developed at Los Alamos National 
Laboratory, among other places, in support of 
engineering verification and validation programs. 
The material presented is based to a large 
extent on a tutorial taught at the Los Alamos 
Dynamics Summer School [1]. The chapter 
overviews the concepts and introduces methods 
useful to assess the predictive accuracy of 
numerical simulations. The technology available 
for code verification, solution verification, test-
analysis correlation, meta-modeling, and 
calibration is discussed. The quantification of 
uncertainty, both in the forward mode (“What is 
the effect of uncertainty on predictions?”) and 
inverse mode (“Where is an observed variability 
coming from?”) is also addressed. Rather than 
providing a detailed account of the state-of-the-
art, techniques are illustrated using engineering 
applications. 

1. INTRODUCTION 
In computational physics and engineering, 

numerical models are developed to predict the 
behavior of a system whose response cannot be 
measured experimentally. A key aspect of 
science-based predictive modeling is to assess 
the credibility of predictions. Credibility, which 
is usually demonstrated through the activities of 
model Verification and Validation (V&V) refers to 
the extent to which numerical simulations can be 
analyzed with confidence to represent the 
phenomenon of interest [2]. 

One can argue, as it has been proposed in 
recent work [3], that the credibility of a 
mathematical or numerical model must combine 

 

 

three components: 1) An assessment of fidelity 
to test data; 2) An assessment of the robustness 
of prediction-based decisions to variability, 
uncertainty, and lack-of-knowledge; and 3) An 
assessment of the prediction accuracy of the 
models in situations where test measurements 
are not available. Unfortunately, the three goals 
are antagonistic. In Reference [3], a Theorem is 
proven that illustrates for a wide class of 
uncertainty models the irrevocable trade-off 
between robustness-to-uncertainty, fidelity-to-
data, and confidence-in-prediction. 

The three aforementioned assessments 
nevertheless require a similar technology in 
terms of model validation and quantification of 
uncertainty. Even though V&V in Structural 
Dynamics is rapidly evolving and open research 
to a great extent, the intent of this publication is 
to overview the technology developed at Los 
Alamos National Laboratory (LANL) in support of 
V&V activities for engineering applications. After 
a brief introduction of the main concepts of 
predictive accuracy, the discussion focuses on 
verification, validation, and the quantification of 
uncertainty for numerical simulations. The main 
references are provided and the techniques are 
illustrated with examples. 

2. CONCEPTS 
Even though the conventional activities of 

model V&V are generally restricted to improving 
the fidelity-to-data through the correlation of test 
and simulation results and the calibration of 
model parameters [4-5], the other two 
components are equally important. The main 
reason is that optimal models—in the sense of 
models that minimize the prediction errors with 
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respect to the available test data—possess 
exactly zero robustness to uncertainty and 
lack-of-knowledge [6]. This means that small 
variations in the setting of model parameters, or 
small errors in the knowledge of the functional 
form of the models, can lead to an actual fidelity 
that is significantly poorer than the one 
demonstrated through calibration. 

Clearly, fidelity-to-data matters because no 
analyst will trust a numerical simulation that 
does not reproduce the measurements of past 
experiments or the information contained in 
historical databases. Robustness-to-uncertainty 
is equally critical to minimize the vulnerability of 
decisions to uncertainty and lack-of-knowledge. 
It may be argued, however, that the most 
important aspect of credibility is the assessment 
of confidence-in-prediction, which is generally 
not addressed in the literature. Assessing the 
confidence-in-prediction here refers to an 
assessment of prediction error away from 
settings where physical experiments have been 
performed, which must include a rigorous 
quantification of the sources of variability, 
uncertainty, and lack-of-knowledge, and their 
effects on model-based prediction. The concepts 
of fidelity-to-data, robustness-to-uncertainty, and 
prediction confidence are illustrated in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Illustration of the concepts of fidelity-to-
data, robustness-to-uncertainty, and prediction 
accuracy (range, “looseness,” or confidence). 

It is emphasized that, because this is work-
in-progress to a great extent, the concept of 
prediction accuracy denoted in Figure 1 by the 
symbol λY is somewhat broad. It is analogous to 
a range of predictions, or “looseness.” Clearly, 
predicting a range of values relates to the notion 
of confidence that one has in the ability to make 
accurate predictions. The notion of accuracy λY 
is further discussed below. It is believed that 
future research will narrow down this definition, 
but a standard accepted throughout the scientific 
community is not, to the best of our knowledge, 
currently available. 

Throughout the manuscript, the numerical 
simulation is represented conceptually as a 
“black-box” input-output relationship between 
inputs pk and outputs yk. In the case, for 
example, of the relationship between two inputs 
(p1;p2) and a single output y, we write: 

)p;M(py 21=  (1)
A domain such as [p1

(min);p1
(max)] x [p2

(min);p2
(max)] 

represents the design space over which 
predictions must be obtained. Such requirement 
implies that the prediction accuracy must be 
established for all settings (p1;p2) in the design 
domain [p1

(min);p1
(max)] x [p2

(min);p2
(max)].1 

Fidelity-to-data represents the distance e—
assessed with the appropriate metrics, possibly 
statistical tests if probabilistic information is 
involved—between physical measurements yTest 
and simulation predictions y at a setting (p1;p2): 

yye Test −=  (2)
Fidelity-to-data is pictured in Figure 1 as the 
vertical distance between a measurement yTest 
and a prediction y for a physical experiment and 
a numerical simulation performed at the same 
setting (p1;p2). 

Robustness-to-uncertainty here refers to 
the range of settings (p1;p2) that provide no more 
than a given level of prediction error eMax. The 
concept of robustness is illustrated in Figure 1 
by showing a subset Ua of the design domain 
[p1

(min);p1
(max)] x [p2

(min);p2
(max)]. The significance of 

the concept of robustness-to-uncertainty is that 
                                                           
1 The input parameters (p1;p2) represent settings such 
as, for example, the angle of attack and flow velocity 
of an aero-elastic simulation that predicts a coefficient 
of lift y=CL. Another example is the response of a 
building to Earthquakes. The input parameters might 
represent the amplitude and frequency contents of the 
excitation, and the output prediction might be a peak 
level of structural stress occurring in the structure. 

1) Fidelity-to-data, e 
(Prediction error) 

λY
p2

p1 

y=M(p1;p2) 

e 
y 

yTest 

2) Robustness-to-
uncertainty, a* 

3) Range of 
predictions, λY 

Ua* 

a* 
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all predictions made for settings (p1;p2) chosen 
inside the domain Ua are guaranteed not to 
exceed the error level eMax. The a-parameter 
represents the “size” of the domain Ua. The 
definitions of the sizing parameter (a) and 
corresponding domain (Ua) are arbitrary at this 
point because the purpose of this discussion is 
to introduce concepts. The only constraint to 
satisfy is that increasing values of the sizing 
parameter a must define nested domains Ua, as 
shown in Figure 2. References [3, 7] define the 
families of domains Ua as convex sub-spaces. 
This choice allows the analyst to accommodate 
a wide variety of uncertainty and lack-of-
knowledge models.2 
 
 
 
 
 
 
 
 
 
 
 
 

(2-a) Illustration of 1D nested intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2-b) Illustration of 2D nested ellipsoids. 
Figure 2. Concept of nested, convex subsets. 

                                                           
2 A first example is a probabilistic model of variability 
where the values of coefficients in the covariance 
matrix are controlled by the parameter a. A second 
example is a possibility structure π defined to 
represent a lack-of-knowledge, where the size of 
intervals is proportional to the parameter a. A third 
example is a family of fuzzy membership functions 
defined to represent expert judgment and linguistic 
ambiguity, where the membership functions are 
parameterized by the uncertainty parameter a. 

Clearly, a large robustness-to-uncertainty 
(a) is more desirable than a small one (b) 
because the former subspace will encompass all 
events defined in the latter one, or Ub ⊂ Ua. A 
large robustness indicates that potentially large 
uncertainty and lack-of-knowledge does not 
deteriorate the prediction error by more than 
eMax. Generally, a trade-off must be decided 
upon between the robustness-to-uncertainty (a) 
and prediction error (eMax), or fidelity-to-data. 
Studying such trade-off is the basic concept of 
the information-gap theory for decision-making 
under severe uncertainty [7]. 

Finally, the symbol λY in Figure 1 refers to 
the range of predictions made by a family of 
potentially different “models.” The importance of 
λY stems from the fact that, to have confidence 
in predictions, there should be as much 
consistency as possible between the predictions 
provided by equally credible sources of 
information. Confidence is generally increased 
when different sources of evidence all reach the 
same conclusion. The concept of confidence-in-
prediction is illustrated in Figure 1 by showing a 
range λY of predictions obtained when different 
“models” are exercised to make predictions at a 
setting (p1;p2) where no test data are available. 

The ultimate goal of model validation is to 
establish predictive confidence by estimating the 
range of predictions λY (or, equivalently, the 
lack-of-consistency) provided by equally credible 
sources of information. The range of predictions 
is related to the notion of confidence through, for 
example, the use of statistical testing. Note that 
the terminology “model” is here defined in a 
broad sense. In any realistic application, sources 
of evidence include expert judgment, back-of-
the-envelope calculations, measurements, and 
predictions obtained from phenomenological 
models or high-fidelity simulations. All available 
sources of information must be taken into 
account to assess the credibility of predictions. It 
is equally important to understand, quantify, and 
eventually combine the uncertainty associated 
with each source of information. 

The remainder of this chapter is devoted to 
discussing where uncertainty arises in numerical 
simulations, how it may be identified, and how to 
quantify it. It will become clear that it may not be 
possible to always describe uncertainty using 
the theory of probability. Defining a framework 
for information integration within the Generalized 
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Information Theory is currently an area of active 
research [8-9], although not addressed here. 

3. VERIFICATION ACTIVITIES 
Because our intent is to substitute 

numerical simulations for information that cannot 
be obtained experimentally, the predictive 
accuracy of models upon which simulations rely 
must be established through V&V. Verification 
basically refers to the assessment that the 
equations implemented in the computer code 
are solved correctly, no programming error is 
present, and the discretization leads to 
converged solutions both in time and space. 
Validation, on the other hand, refers to the 
adequacy of a model to describe a particular 
physical phenomenon. 

Numerical results from, for example, finite 
element simulations, provide approximations to 
sets of coupled partial differential equations. 
Before the validity of the equations themselves 
can be assessed, verification must take place to 
guarantee the quality of the solution. Verification 
is formally defined as “the process of 
determining that the implementation of a model 
accurately represents the conceptual description 
of the model and its solution” [10]. The primary 
sources of errors in computational solutions are 
inappropriate spatial discretization, inappropriate 
temporal discretization, insufficient iterative 
convergence, computer round-off, and computer 
programming. Verification quantifies errors from 
these various sources, and demonstrates the 
stability, consistency, and accuracy of the 
numerical scheme. The main activities, namely, 
code verification and calculation verification, are 
briefly overviewed in this section. 

3.1 Code Verification 

Code verification can be segregated into 
two parts: numerical algorithm verification, which 
focuses on the design and underlying 
mathematical correctness of discrete algorithms 
for solving partial differential equations, and 
Software Quality Assurance (SQA), which 
focuses on the implementation of the algorithms. 

Software Quality Assurance 

SQA determines whether or not the code 
as a software system is reliable (implemented 
correctly) and produces repeatable results with a 
specified environment composed of hardware, 
compilers, and libraries. It focuses on the code 

as a software product that is sufficiently reliable 
and robust from the perspective of computer 
science and software engineering. 

Analysis and testing basically rests in three 
techniques: static analysis, dynamic testing, and 
formal testing [11]. Static analysis techniques 
analyze the form, structure, and consistency of 
the code without executing the code. Examples 
of static analysis techniques are software 
reviews, complexity analysis, inspections, and 
analyses of data flows. Dynamic testing involves 
the execution of the code. Examples include 
regression testing, black-box testing, and glass-
box testing. The results of executing the code 
help to diagnose coding errors or weaknesses in 
design that can cause coding errors. Formal 
testing methods are directed toward rigorously 
demonstrating that the code exactly represents 
the underlying conceptual model. 

It is emphasized that successful SQA plans 
must be defined before and implemented during 
the development of the product, rather than 
being viewed as an activity that takes place after 
the software has been developed. Whether SQA 
is a legitimate V&V activity is still debated in the 
Structural Dynamics community. Our current 
opinion is that it is not because SQA activities 
cannot presume the intended purpose of the 
software. Code users should nevertheless be 
cognizant and enforce the implementation of 
sound SQA practices for the software they use. 

Numerical Algorithm Verification 

Numerical algorithm verification addresses 
the reliability of the implementation of all of the 
algorithms that affect the numerical accuracy 
and efficiency of the code. In other words, this 
verification process focuses on how correctly the 
numerical algorithms are programmed in the 
code. The major goal is to accumulate sufficient 
evidence to demonstrate that the numerical 
algorithms in the code are implemented correctly 
and functioning as intended. 

The study of error estimation and numerical 
algorithm verification is fundamentally empirical. 
Numerical algorithm verification deals with 
careful investigations of topics such as spatial 
and temporal convergence rates, iterative 
convergence, independence of solutions to 
coordinate transformations, and symmetry tests 
related to various types of boundary conditions. 
Such error evaluation is clearly distinct from 
error estimation that deals with approximating 
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the numerical error for particular applications 
when the correct solution is not known [12]. 

The principal components of this activity 
include the definition of appropriate test 
problems for evaluating solution accuracy, and 
the determination of satisfactory performance of 
the algorithms on the test problems. Numerical 
algorithm verification rests upon comparing 
computational solutions to the “correct” answer, 
which is provided by highly accurate solutions 
for well-chosen test problems. Figure 3 pictures 
a non-linear pendulum verification problem. The 
equation that governs the pendulum angle as a 
function of time is given by: 

( ) 0θ(t)sinλ
dt
θ(t)d 2

2

2
=+  (3)

where λ2=(g/L), L is the length of the pendulum, 
and g is the gravitational acceleration constant. 
A highly accurate solution of equation (3) can be 
compared to the results obtained from a finite 
element analysis that, for example, represents 
the pendulum as a rigid body. Statistics of the 
difference between the two solutions establish 
the reliability of algorithms for this problem only. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Pendulum verification problem. 

It is important to understand that this 
activity provides evidence of the verification from 
the intended purpose of the code. “Intended 
purpose” draws a clear boundary between SQA 
and numerical algorithm verification. The suite of 
problems selected to verify the software should 
exercise all the important dynamics and solution 
procedures that will be put into play when 
solving the engineering application of interest. 

The main challenge here is to develop test 
problems for which analytical or highly accurate 
solutions can be obtained.3 A technique for 

                                                           
3 The equation (3), for example, can only be solved 
analytically for angles θ≈(π/2+/-ε), where ε is “small.” 

developing a special type of analytical solutions 
is the Method of Manufactured Solutions (MMS) 
[13-14]. The MMS provides custom-designed 
verification test problems of wide applicability. 
Using the MMS in code verification requires that 
the computed source term and boundary 
conditions are programmed into the code, and 
that a numerical solution is computed. Although 
the intrusive character of the MMS can be 
viewed as a limitation, this technique 
nevertheless verifies a large number of 
numerical aspects in the code, such as the 
numerical method, differencing technique, 
spatial-transformation technique for grid 
generation, grid-spacing technique, and 
correctness of algorithm coding. Applications in 
Fluid Dynamics illustrate that the MSS can 
diagnose errors very efficiently, but cannot point 
to their sources, nor does it identify algorithm-
efficiency mistakes [13]. 

3.2 Solution Verification 

Solution verification basically deals with the 
quantitative estimation of numerical accuracy of 
a given solution. The primary goal is attempting 
to estimate the numerical accuracy of a given 
solution, typically for a non-linear system of 
partial differential equations with singularities or 
discontinuities. Numerical accuracy is critical in 
computations used for validation activities, 
where one should demonstrate that numerical 
errors are insignificant compared to test-analysis 
correlation errors. 

 
Figure 4. Detail of a geometry discretization. 

Typical issues of computational grids are 
suggested in Figures 4 and 5. Figure 4 shows 
that the resolution provided by the grid must be 

Angle, θ

Constant Gravity 
Field, g 

Fixed Anchor 

Vertical, Y 

Horizontal, X 
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appropriate to avoid stress concentrations at the 
“corners” of a complex geometry. Also, the peak 
wave speed that can be captured by a given 
mesh is Cmax=(h/∆t), where h and ∆t represent a 
characteristic element size and time increment. 
Modeling any phenomenon that could propagate 
information at a velocity C>Cmax requires another 
mesh or time integration, to satisfy (h/∆t)>C. A 
third, typical issue is illustrated in Figure 5 that 
compares a distorted mesh to a more regular 
one. Elements with poor aspect ratios tend to 
provide low-quality approximations. 

  
Figure 5. Comparison between a poor-quality 
mesh (left) and a good-quality mesh (right). 

The two basic approaches for estimating 
the error in a numerical solution are a priori and 
a posteriori approaches. A priori approaches use 
only information about the numerical algorithm 
that approximates the partial differential operator 
and the given initial and boundary conditions. A 
priori error estimation is a significant element of 
numerical analysis for differential equations, 
especially those underlying the finite element 
and finite volume methods [15-16]. 

A posteriori approaches use all of the a 
priori information, plus computational results 
from numerical solutions using the same 
numerical algorithm on the same system of 
partial differential equations and initial and 
boundary data. Computational results are 
generally provided as sequences of solutions on 
consecutively finer grids. The framework upon 
which solution verification techniques rely is that 
the true-but-unknown solution of the continuous 
equations, or yC, is equal to the solution y(h) of 
the discretized equations, plus an error assumed 
to be proportional to the rate of convergence: 

)O(hαhy(h)y 1pp +++=C  (4)
The discretization parameter h can represent a 
characteristic mesh size or a time step. Equation 
(4) forms the basis for estimating or verifying the 
order of convergence p, and verifying that the 
approximation y(p) converges to the continuous 
solution yC. The discussion below focuses on a 

posteriori error estimates because they provide 
quantitative assessments of numerical error in 
practical cases of non-linear equations. 

The Richardson Extrapolation 

A posteriori error estimation has primarily 
been approached through the use of Richardson 
extrapolation [13] or estimation techniques with 
finite element approximations [17]. Richardson’s 
method can be applied to both finite difference 
and finite element methods. It computes error 
estimates of dependent variables at all grid 
points, as well as error estimates for solution 
functionals. It is emphasized that different 
dependent variables and functionals converge at 
different rates as a function of grid size or time 
step. Error estimation should be carried out 
mindful of the response outputs of interest. 

Equation (4) features three unknowns: the 
continuous solution yC; the order of convergence 
p; and a constant α. If the order of convergence 
cannot be assumed, three equations are needed 
at a minimum to estimate the triplet (yC;p;α).4 
Therefore, the extrapolation starts by computing 
the three numerical solutions obtained with three 
resolutions hC, hM, and hF: 

p
FFC

p
MMC

p
CCC

αh)y(hy

αh)y(hy

αh)y(hy

+≈

+≈

+≈

 (5)

The subscripts identify the “coarse,” “medium,” 
and “fine” resolutions, respectively. The order of 
convergence p can then be estimated as: 

( )rlog
)y(h)y(h
)y(h)y(hlog

p MF

CM
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

≈  
(6)

where r denotes the ratio between successive 
refinements, r = (hC/hM) = (hM/hF). It is important 
that r be kept constant for estimation (6) to be 
valid. Finally, the true-but-unknown solution yC of 
the continuous partial differential equations can 
be approximated as: 

1r
)y(h)y(hry p

MF
p

C −
−≈  (7)

                                                           
4 Note that, if the order of convergence p is known a 
priori, only two numerical solutions are required to 
estimate the continuous solution yC. It is strongly 
recommended, however, to verify the actual order of 
convergence. Factors such as programming errors, 
stress concentrations, and non-linearity can severely 
deteriorate, at least locally, the order of convergence. 
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Posterior error indicators such as the grid 
convergence index discussed next can be 
calculated to estimate how far the numerical 
approximation is from the continuous solution. 

The Grid Convergence Index 

A Grid Convergence Index (GCI) based on 
Richardson’s extrapolation has been developed 
to assist in the estimation of grid convergence 
error [13, 18]. The GCI converts error estimates 
that are obtained from any grid-refinement ratio 
into an equivalent grid-doubling estimate. 
Recent studies have established the reliability of 
the GCI method, even for solutions that are not 
asymptotically convergent [19-20]. 

The definition of the GCI in Reference [13] 
involves two solutions y(hC) and y(hF), obtained 
with coarse and fine resolutions, respectively: 

⎟
⎠
⎞

⎜
⎝
⎛

−
−=

1r
β

)y(h
)y(h)y(h100GCI p

C

FC  (8)

where β is a constant that adds conservatism to 
the formula, typically, 1 ≤ β ≤ 3. Small values of 
the GCI—typically, less than 1%—indicate that 
the best approximation obtained from the two 
resolutions is close to the true-but-unknown 
continuous solution. 

Applying the Richardson extrapolation and 
GCI concepts would typically start by performing 
three finite element calculations, then verify the 
order of convergence (7), and verify asymptotic 
convergence (8). Again, it is emphasized that 
the convergence study can verify the adequacy 
of a mesh (when h is defined as the grid size), 
just like it can be applied to time or frequency-
domain convergence (when h is a time step or 
frequency increment). In the case of non-linear, 
transient dynamics simulations, mesh and time 
convergence should be verified independently of 
one another, which could lead to significant 
computational demands. 

Table 1. Solution convergence results. 
Criterion Value Estimated 
Order (p) 1.0093 

Coarse-to-
medium 

Medium-to-
fine 

 
GCI 

5.25 10-2 % 5.13 10-3 % 

Table 1 illustrates the results of a GCI study 
for the pendulum problem of Figure 3. An Euler 
forward time integration scheme is implemented 
to integrate equation (3) with three successive 
increments of ∆t=10-2 second, ∆t=10-3 second, 

and ∆t=10-4 second.5 It can be read that the 
estimated order of convergence is very close to 
one, its theoretical value. In addition, the GCI 
values demonstrate asymptotic convergence. A 
10-fold refinement—going from ∆t to (∆t/10)—
combined with an order of convergence equal to 
one decreases the GCI by a factor of (r)p ≈ 10, 
which is what can be observed in Table 1. 

3.3 What Can be Expected From Verification? 

The rigorous verification of a code requires 
“proof” that the computational implementation 
accurately represents the conceptual model and 
its solutions. This, in turn, requires proof that the 
algorithms provide converged solutions of these 
equations in all circumstances under which the 
code will be applied. It is unlikely that such 
proofs will ever exist for general-purpose 
computational physics and engineering codes. 
Verification, in an operational sense, becomes 
the absence of proof that the code is incorrect. 

In this definition, verification activities 
consist of accumulating evidence substantiating 
that the code does not have any apparent 
algorithmic or programming errors, and that it 
functions properly on the chosen hardware and 
system software. This evidence needs to be 
documented, accessible, repeatable, and 
capable of being referenced. The accumulation 
of evidence also serves to reduce the regimes of 
operation of the code where one might possibly 
find such errors. 

In the absence of formal proof, what can be 
expected from the verification activities? Clearly, 
evidence must be provided that the code does 
not have any apparent error, and that it provides 
approximate solutions of acceptable accuracy, 
consistent with the purpose intended. How much 
evidence should be provided (in other words, 
“How good is good enough?”) is not addressed 
here because such question directly relates to 
accreditation and the definition of a standard. It 
is also application-specific to a great extent. 

4. VALIDATION ACTIVITIES 
In this section, typical validation activities are 

presented. To illustrate the relationship between 
                                                           
5 The finite element analysis simulates a rigid rod, 
therefore, the only aspect that needs to be verified is 
the time integration algorithm. Other aspects of the 
code, such as an element formulation or a contact 
algorithm, can be verified independently. 
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fidelity-to-data, uncertainty quantification, and 
predictive accuracy, these activities are put in 
the context of a material test instead of being 
discussed separately. 

Material scientists commonly use an 
experiment known as the Taylor anvil impact to 
develop constitutive and equation-of-state 
models. Because of the regimes for which they 
are developed, such models generally include 
plasticity, high strain-rate and temperature 
dependency. Examples used in engineering 
mechanics include the Johnson-Cook and Zerilli-
Amstrong models [21-22]. The Taylor anvil 
experiment consists of impacting a sample of 
material against a rigid wall and measuring its 
deformed profile. The measured profiles are 
compared to numerical predictions and 
parameters of the constitutive equations can be 
calibrated to improve the accuracy of the model. 

A suite of validation experiments is 
designed, starting with Hopkinson bar testing 
and proceeding with the higher strain-rate Taylor 
tests, to assess the predictive accuracy of 
material models over different regions of the 
operational space. Based on test-analysis 
correlation and statistical meta-modeling, the 
predictive accuracy of a constitutive model is 
assessed in regions of the operational space 
where testing is not possible. The significance of 
this assessment is that the fidelity-to-data can 
be estimated, even before performing the 
calculation itself. The suite of tools developed for 
model validation helps analysts decide whether 
their models meet the accuracy requirement for 
a particular application. 

4.1 The Validation Domain 

Before proceeding with the description of 
the validation steps, the notion of validation 
domain must be introduced. Generally speaking, 
a numerical simulation is always developed to 
analyze a given operational domain because 
point-predictions, that is, models that cannot be 
parameterized or modified, are not very useful. 

The constitutive model investigated here is 
developed to run numerical simulations at 
various combinations of strain-rates and 
temperatures. For our application, these two 
input variables define the operational space of 
interest. The validation domain is simply defined 
as the region of the operational space where the 
mathematical or numerical model provides 

acceptable accuracy for the application of 
interest. This concept is illustrated in Figure 6. 
Simply speaking, validation is achieved when 
the predictive accuracy of the model has been 
assessed within the operational domain, a 
consequence of which is the identification of the 
region—or validation domain—that provides 
sufficient accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Definition of a validation domain. 

4.2 Validation Experiments 

A suite of validation experiments is first 
designed. The nature of a validation experiment 
is fundamentally different from the nature of a 
conventional experiment. The basic premise is 
that a validation experiment is a somewhat 
simpler procedure that isolates the phenomenon 
of interest. A suite of experiments provides 
increasing levels of understanding. 

Static material testing comes first, which 
allows the identification of bulk mechanical 
properties such as the modulus of elasticity. 
Because such tests are static in nature, they 
must be augmented with Hopkinson bar tests. 
Hopkinson bar tests however do not provide 
sufficient resolution in the regime of interest, that 
is, at high strain-rates and varying temperatures. 

To obtain more insight into the behavior of 
the plasticity throughout the validation domain, 
Taylor anvil tests are performed next. The 
validation experiments explore different regions 
of the validation domain while providing 
successive material models that are hopefully 
consistent with each other. The discussion in 
this work focuses on the definition of an error 
metric between inferences made from the 
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Hopkinson bar tests and inferences made from 
the Taylor anvil impact tests (see section 4.6). 

4.3 Design vs. Calibration Parameters 

The Zerilli-Amstrong model estimates the 
stress resulting from a plastic deformation as: 

N
P5

)
dt

dεTlog(CTC
1o εCeCCσ

P
43

++=
+−

 
(9)

where the symbol T represents temperature and 
Pε  denotes plastic strain. The six parameters 

C0, C1, C3, C4, C5 and N are material-dependent 
constants that can be calibrated to improve the 
predictive accuracy of the model. Because of the 
large spread of strain-rates for which a validated 
model is sought (from the quasi-static rate of 10-

3/second to 4x10+3/second), another symbol SR 
is introduced that defines the logarithm of the 
plastic strain rate: 

⎟
⎠
⎞

⎜
⎝
⎛=

dt
dεlogS P

10R  (10)

It is important not to confuse the six 
calibration variables (C0;C1;C3;C4;C5;N) with the 
two input parameters (T;SR) that define the 
operational space or validation domain. The 
main difference between the two is that 
calibration variables are introduced by our 
particular choice of plasticity model. Should 
another physical model be adopted, the 
calibration variables would likely change. The 
dimensionality of the operational space, 
however, never changes and the plasticity 
models—whatever they are—must still be 
validated at various combinations of (T;SR). 

4.4 Forward Propagation of Uncertainty 

Two of the key technologies for V&V are 
the propagation and analysis of uncertainty. This 
is because model validation is essentially an 
exercise in the assessment and quantification of 
uncertainty, whether it originates from the model 
(lack-of-knowledge, modeling assumptions, and 
parametric variability), computations (mesh and 
convergence-related numerical errors), physical 
experiments (variability of the environment and 
measurement error), or judgments (vagueness 
and linguistic ambiguity). 

In sections 4.4 and 4.5, some of the tools 
employed to propagate uncertainty are briefly 
illustrated. They include Monte Carlo sampling 
for propagating uncertainty through forward 
calculations and Bayesian calibration for 

backward inference. Other tools, that include the 
design of experiments and analysis-of-variance, 
are illustrated in section 5 [23-25]. 

Figure 7 shows several deformed profiles 
simulated with the finite element package 
HKS/AbaqusTM [26]. In this numerical simulation, 
an axi-symmetric mesh is impacted against a 
perfectly rigid surface, which produces large 
deformations (over 260%) and significant plastic 
strain at the crushed end of the cylinder. The six 
profiles in Figure 7 are obtained by varying the 
material coefficients (C0;C1;C3;C4;C5;N). 

 
Figure 7. Deformation profiles randomly selected 

from a 1,000-run Monte Carlo analysis. 

Each calibration variable is assumed to 
vary according to a Gaussian Probability Density 
Function (PDF). Because the calibration 
variables are assumed to be independent and 
uncorrelated, sampling the six individual PDF 
laws is straightforward. Random samples of 
coefficient values are drawn from the six 
distributions independently. A combination of 
variables (C0;C1;C3;C4;C5;N) defines a specific 
material model, and the impact simulation is 
repeated for each model. This procedure defines 
a Monte Carlo simulation, and a total of 1,000 
finite element calculations are performed.6 

In Figures 8 and 9, two features of the 
response are defined to characterize the 
deformed profiles, the ratios of final-to-initial 
lengths (L/Lo) and footprints (R/Ro). Each point 
                                                           
6 The number of simulations is selected somewhat 
arbitrarily based on the time necessary to perform a 
single analysis and the available computing resource. 
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in Figure 8 corresponds to the result of an 
impact simulation for a particular material model. 
It can be observed that there is a significant 
correlation between the two output features, as 
one would expect because the shorter the 
cylinder, the larger its footprint. The histograms 
shown in Figure 9 are obtained by projecting the 
distribution of output features on the horizontal 
and vertical axes. Each axis is then discretized 
in twenty bins and the histograms simply show 
how many features are counted within each bin. 
The histograms approximate the output PDF. It 
can be observed from their asymmetries and 
long tails that the probability laws of response 
features (L/Lo) and (R/Ro) are not normal. It is 
well known that a Gaussian PDF propagated 
through a non-linear system such as this finite 
element simulation does not stay Gaussian. 

 
Figure 8. Distribution of features (L/Lo) and 

(R/Ro) obtained from the Monte Carlo simulation. 

 
Figure 9. Histograms of (L/Lo) and (R/Ro). 

Monte Carlo simulations are popular 
because of their simplicity and well-established 
convergence properties. Our simple illustration 
demonstrates the propagation of uncertainty 
from inputs to outputs and the estimation of the 
response’s probability structure, from which 
statistics can be calculated. To guarantee 
convergence, however, large numbers of 
samples may be required in which case other 
sampling strategies—for example, stratified 
sampling such as the Latin Hypercube Sampling 

[27] or orthogonal arrays [28]—offer attractive 
alternatives. Screening experiments and 
analysis of variance can also be performed to 
understand which combinations of inputs are 
responsible for explaining a spread of responses 
such as the one pictured in Figure 8 [23, 25, 29]. 

4.5 Inverse Propagation of Uncertainty 

The calibration of model parameters is a 
technique often employed to improve the fidelity-
to-data. Calibration is generally formulated as a 
deterministic inverse problem. A cost function is 
defined as the “distance” in some sense 
between measurements and predictions. Model 
parameters are then optimized to minimize the 
cost function. In the context of statistics where it 
is recognized that both calibration parameters 
and response features are random variables, a 
mechanism must be found to propagate 
uncertainty from the measurements back to the 
inputs. This is here referred to as the inverse 
propagation of uncertainty. 

Although many formulations are possible, 
the concept of Bayesian inference is illustrated 
here for the Taylor impact application [30]. Like 
in the deterministic case, a procedure for inverse 
propagation of uncertainty starts with the 
definition of a cost function. The main difference 
is to take into account the fact that the input 
parameters p and output features y are random 
variables, which generally implies that the cost 
function becomes a statistical test. In the case of 
Bayesian inference, the cost function defines the 
posterior probability that the model parameters 
p=(C0;C1;C3;C4;C5;N) are correct given evidence 
provided by the physical measurements yTest. 
The posterior PDF is the conditional probability 
law of the calibration variables p: 

)) y| log(Prob(p2e Test2 −=  (11)

The Bayes Theorem states that the 
posterior probability (e2) is the product of the 
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likelihood function—likelihood to predict the 
measurements based on a given model—
multiplied by the prior probability of p. Under the 
assumption of Gaussian probability laws, the 
likelihood function becomes the mean square 
error between measurements and predictions. 
One advantage is that the cost function obtained 
is a closed-form expression: 

( ) ( ) ( )
( ) ( ) ( )o

1
p

T
o

N1...k
k

Test
k

1Test
y

T
k

Test
k

2

ppΣpp

(p)yyΣ(p)yye
k

−−+

−−=

−
=

−∑
(12)

where the inverted matrices are formed from 
variance and covariance values, and the symbol 
po denotes the nominal material coefficients. The 
quantify y={(L/Lo); (R/Ro)} collects the output 
features. The summation aggregates information 
obtained from potentially different experiments 
(see section 6). When Gaussian probability 
distributions are assumed, the cost function (12) 
becomes the well-known chi-square statistical 
test that attempts to reject the null hypothesis 
that measurements yTest and model predictions y 
are sampled from the same parent population. 

The general procedure for calculating the 
chi-square statistics goes as follows. First, the 
simulation is analyzed for a given experimental 
configuration defined by the temperature and 
strain-rate parameters (T;SR), and given material 
coefficients (p). The features (L/Lo) and (R/Ro) 
are calculated from the final deformed profile. 
These two predictions are compared to the 
measurements. Figure 10 shows a typical test-
analysis comparison. The procedure is repeated 
for each combination of temperature and strain-
rate (T;SR) to accumulate the chi-square metric. 

  
Figure 10. Test-analysis comparison 

 (Left: measured profile; right: simulated profiles 
at 17 ms, 33 ms, and 50 ms after impact.) 

Once a numerical procedure has been 
defined to compute the cost function, the 
calibration variables p=(C0;C1;C3;C4;C5;N) are 
optimized to search for the lowest possible chi-
square value. Because the prior and posterior 
PDF laws have been assumed to be Gaussian, 
a deterministic optimization solver can be used 
to optimize the posterior mean and covariance. 
In the case where no evidence is available to 
suggest a particular distribution, the main 
difficulty becomes the estimation of a posterior 
PDF whose functional form is unknown. This 
can be resolved with a Markov Chain Monte 
Carlo optimizer that exhibits the attractive 
property of being able to sample an unknown 
probability law [25, 31]. 

Table 2: Values of the calibration variables. 
 Prior 

Mean(a) 
Post. 

Mean(b) 
Prior 
STD(c) 

Post. 
STD(d) 

C0 175.0 102.5 20.0% 32.1%
C1 950.0 954.3 20.0% 9.6%
C3 3.0x10-3 4.1x10-3 20.0% 14.6%
C4 8.5x10-5 11.7x10-5 20.0% 24.8%
C5 675.0 996.2 20.0% 2.2%
N 0.275 0.247 20.0% 8.5%

Legend: (a)Mean of the prior distribution; (b)Mean of the 
posterior distribution; (c)Standard deviation of the prior 
distribution, divided by the prior mean in column 2; 
(d)Standard deviation of the posterior distribution, 
divided by the posterior mean in column 3. 

The calibration results presented in Table 2 
are obtained by minimizing the cost function (12) 
with a gradient-based optimization solver. The 
statistical moments of the calibration variables 
prior and posterior Gaussian distributions are 
shown. Bayesian inference also updates the 
entire posterior covariance matrix, from which 
one can study the correlation between variables. 
It can be observed from Table 2 that calibration 
tends to reduce the standard deviation values, 
except for variables C3 and C4. This indicates 
that information is learned from the test-analysis 
correlation exercise. 

In summary, the example illustrates how a 
set of calibration variables p=(C0;C1;C3;C4;C5;N) 
can be optimized to improve the fidelity-to-data 
of a numerical simulation. Prediction accuracy is 
improved using physical experiments performed 
at various settings of the design parameters, in 
our case the temperature and strain-rate (T;SR). 
The procedure relates measurement variability 
to input uncertainty, hence propagating the 
uncertainty backwards. 
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5. UNCERTAINTY QUANTIFICATION 
In section 4, the propagation of uncertainty 

from input variables to output features, or vice-
versa, is discussed—forward propagation and 
inverse propagation, respectively. Another type 
of analysis, namely the screening experiment, 
is addressed here. Effect screening refers to the 
identification of interactions between inputs to 
explain the variability of outputs. 

Effect screening addresses questions such 
as: “Which inputs or combination(s) of inputs 
explain the variability of outputs?” Screening is 
typically performed to truncate the list of input 
variables by determining which ones most 
influence the output features over the entire 
design domain. Identifying the effects most 
critical to an input-output relationship is also the 
basis for replacing physics-based models by 
fast-running surrogates (see section 5.2). 

5.1 Effect Screening 

Effect screening is typically achieved using 
the concept of analysis-of-variance [29], or other 
techniques such as Bayesian screening [25] (not 
discussed here). Our experience with these 
methods is that a successful screening of effects 
should always provide consistent results when 
techniques of different nature are employed [23]. 

 
Figure 11. Variability of predictions obtained by 

varying the material coefficients. 

Figure 11 shows features of the longitudinal 
stress wave that propagates through the 
material during Taylor impact simulations. The 
three features are temporal moments E, T, and 

D that characterize the energy and time-of-
arrival of the waveform [32]. Figure 11 is shown 
to explain what screening can be useful for. 
Each datum results from a numerical simulation 
performed with a specific material model (9). 
The “spread” of predictions (E;T;D) comes from 
varying the five material coefficients C1, C3, C4, 
C5, and N. Figure 11, however, does not explain 
which input (C1, C3, C4, C5, or N) or combination 
of inputs (such as C1C3, C1N, or N2) explains the 
variability of E, T, and D. Screening answers 
such question, basically, by performing multiple 
regression analyses and estimating correlations 
between the input effects and output features. 

 
Figure 12. Screening of important variables 

through an analysis-of-variance. 

Figure 12 pictures the results of an analysis-
of-variance for main effects only. The screening 
of main effects (also known as linear screening) 
attempts to identify the inputs that control the 
output variability, without accounting for higher-
order effects. The R2 statistics, that estimate a 
coefficient of correlation, are shown for the three 
features E, T, and D. A large R2 relative to the 
other values indicates that the corresponding 
input factor (either C1 in position 1, C3 in position 
2, etc.) produces a significant variability of the 
output feature. The analysis demonstrates that 
the variability of features (E;T;D) is controlled for 
the most part by the material coefficients C1, C3, 
and C4. Because the other factors do not 
produce significant output variability, they can be 
kept constant and equal to their nominal values. 
These results illustrate the potential of screening 
experiments to understand where an observed 
variability comes from, and how it can most 
effectively be reduced. 
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5.2 Surrogate Modeling 

Many analyses (such as the propagation of 
uncertainty, parameter calibration, and reliability) 
become computational prohibitive when the 
number of inputs and outputs increases. Instead 
of arguing for approximate and less expensive 
solutions, the approach can be taken to replace 
physics-based models by surrogates. 

Surrogate models (also known as meta-
models, emulators, or response surfaces) 
capture the relationship between inputs and 
outputs without providing a detailed description 
of the physics, geometry, loading, etc. The 
advantage of surrogate models is that they can 
be analyzed at a fraction of the cost it would 
take to perform the physics-based simulations. 
Examples include polynomials, exponential 
decays, neural networks, principal component 
decomposition, and statistical inference models.7 

Meta-models must be trained, which refers 
to the identification of their unknown functional 
forms and coefficients. Their quality must be 
evaluated independently from the training step. 
Because analyzing finite element models at 
every combination of input variables is generally 
a combinatorial impossibility, training can be 
based on a subset of carefully selected runs 
that, statistically speaking, provide the same 
amount of information (see section 5.3). 

5.3 Design of Computer Experiments 

Design of Experiments (DOE) techniques 
have been developed for exploring large design 
spaces when performing complex, physical 
experiments. They can be brought to bear to 
select judicious subsets of finite element runs. 
Such simulations provide the input-output data 
used, for example, to fit surrogate models. 

It is important to realize that meta-modeling 
and effect screening can both be performed with 
the same DOE because identifying which effects 
and interactions capture a particular input-output 
relationship essentially delivers the functional 
form of the surrogate model. 

Examples of popular designs include the 
Morris method, fractional factorials, the Central 
                                                           
7 An example of meta-model is presented in section 6 
for assessing the predictive accuracy of the Taylor 
impact simulation. Techniques for the design of 
experiments, screening, and meta-modeling are 
overviewed in References [33-34]. 

Composite Design (CCD), and orthogonal 
arrays. Figure 13 illustrates a two-factor CCD 
and a three-factor orthogonal array. In both 
cases, finite element analyses are performed at 
the combinations (p1;p2) or (p1;p2;p3) shown. It 
can be observed that the CCD and orthogonal 
array require nine and six finite element runs, 
respectively. Using the CCD, a fully quadratic 
polynomial can be identified. The orthogonal 
array shown in Figure 13 can only identify a few 
interactions (such as p1p2 or p1p3) but quadratic 
effects (such as p1

2 or p2
2) cannot be screened. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) Two-factor central composite design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Three-factor orthogonal array design. 
Figure 13. Designs for computer experiments. 

Characteristics of a good design are that it 
relies on as few runs as possible; provides 
screening capabilities; leads to high-quality 
surrogate models; and minimizes aliasing, which 
refers to the compounding of effects that cannot 
be captured by the design [33-34]. 

5.4 General Information Theory 

The discussion of uncertainty quantification 
and propagation has so far been placed in the 
context of probability. It is our assessment that 
probability theory provides an appropriate model 
of uncertainty for most engineering applications. 

p1

p2 

p1

p2 

p3 
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Analysts should nevertheless be cautious 
not feeling over-confident and assuming more 
than is really known. In cases of severe lack-of-
knowledge, more appropriate theories may be 
available to represent uncertainty. Examples 
include interval arithmetic; fuzzy logic [35]; the 
theory of information-gap [6-7]; the Dempster-
Shafer theory of evidence [36]; and possibility 
theory [37]. These are generally referred to as 
the Generalized Information Theory (GIT). 

Information integration and aggregation is a 
major challenge that the current research is 
attempting to address. Although progress has 
mostly been made within the GIT and statistical 
sciences communities, work is in progress in the 
Structural Dynamics community as well [8-9]. 

6. PREDICTIVE ACCURACY 
In section 5, the problem of calibrating the 

model’s parameters under uncertainty has been 
illustrated. Calibration, however, is only a tool in 
support of predictive accuracy assessment. A 
calibrated model is likely to provide small 
prediction errors in the neighborhood of the 
points used for calibrating its parameters but the 
question of adequacy in other regions of the 
operational space remains. In the remainder, an 
assessment of predictive accuracy for the 
plasticity model is illustrated. The illustration is 
purposely simplified for the sake of clarity. 

6.1 Assessment of Prediction Accuracy 

The concept of operational space (or 
validation domain) introduced in section 4.1 is 
essential to the discussion. The operational 
domain, that is, the set of conditions for which a 
validated model of plasticity is sought, is defined 
by the combination of temperature T and strain-
rate SR, as shown in Figure 14. The red dots 
symbolize the settings (T;SR) at which physical 
experiments have been performed. These are 
the same seven experiments used previously to 
calibrate the variables (C0;C1;C3;C4;C5;N), see 
section 4.5. The question we would like to 
answer is the following one: “Can the predictive 
accuracy of the plasticity model be estimated 
throughout the operational domain?” 

Figure 15 pictures the results of the inverse 
propagation of uncertainty from section 4.5. The 
solid lines represent the strain-stress curves 
predicted by the calibrated Zerilli-Amstrong 
model for the seven configurations (T;SR) shown 

in Figure 14. Predictions are compared to 
experimental measurements obtained with the 
Hopkinson bar tests. The vertical bars represent 
the experimental uncertainty. Simply speaking, 
Figure 15 compares the consistency obtained 
when material models are inferred from two 
different experimental procedures. Predictive 
accuracy of the Zerilli-Amstrong plasticity model 
is assessed based on this consistency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Location of the seven Taylor tests 
performed in the operational space. 

 
Figure 15. Comparison between Zerilli-Amstrong 

models and Hopkinson bar test data sets. 

To define a quantitative metric of correlation, 
the Mahalanobis distance is calculated between 
measurements and predictions: 

( ) ( ) ( )y(p)yΣy(p)ye Test1Test
y

TTest2 −−=
−

 (13)

where yTest represents the mean of the 
measured stress-strain curves and y(p) is the 
prediction of the calibrated plasticity model. The 
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covariance matrix is equal to a diagonal matrix—
therefore neglecting the correlation between the 
data—initialized with the measurement variance. 
The Mahalanobis statistic is adopted here 
because it assesses the fidelity-to-data relative 
to the experimental variability. However, the 
choice of a metric for test-analysis comparison is 
generally application-specific. Figure 16 shows 
the Zerilli-Amstrong prediction errors computed 
at the seven settings in the two-dimensional 
space (T;SR) where Taylor anvil impacts have 
been performed. The question remains of 
knowing how well the model performs at 
locations in the operational space where no 
physical experiment is available. 

 
Figure 16. Mahalanobis error metrics for 

predictive accuracy assessment. 

This question is addressed by developing a 
meta-model of predictive accuracy. A statistical 
model is developed based on the seven errors 
of Figure 16. The model is referred to as a meta-
model because its development is not based on 
physical principles. Its only purpose is to capture 
an input-output relationship—between the input 
parameters (T;SR) and the prediction error e2—
and extrapolate beyond the available data with 
reasonable accuracy. A polynomial is selected 
for simplicity. Other choices might include neural 
networks or Krigging models. An arbitrary choice 
such as this one expresses lack-of-knowledge. 
Even though it is not shown, this uncertainty 
should be accounted for in the assessment of 
prediction accuracy. The estimation of predictive 
accuracy is illustrated graphically over the entire 
domain (T;SR) in Figure 17. 

 
Figure 17. Meta-model of prediction accuracy. 

The significance of Figure 17 is that it 
provides an estimation of the adequacy of the 
Zerilli-Amstrong model everywhere within the 
operational domain, without having to perform 
any additional physical experiment or simulation. 
It is emphasized that validation does not mean 
that the model should be “perfect” everywhere, 
which is a significant shift of paradigm compared 
to the model calibration approach. The model is 
validated because its prediction accuracy has 
been assessed throughout the design space, 
and especially away from testing conditions. 

6.2 Discussion 

Two key issues have not been discussed. 
They are the breakdown of total uncertainty and 
the quantification of modeling uncertainty. Total 
uncertainty refers to the aggregation of all 
potential sources of uncertainty, originating from 
measurements, models, or expert knowledge. In 
this work, examples have been given of how to 
account for independent sources such as 
measurement uncertainty, parametric variability, 
or solution error, but bringing them together has 
not been addressed. Information integration and 
total uncertainty assessment are currently being 
studied. The importance of these concepts is 
critical for validation and margin assessment. 

Modeling lack-of-knowledge refers to the 
uncertainty that results from arbitrary choices 
such as modeling assumptions and functional 
forms. Any rigorous assessment of predictive 
accuracy should account for such uncertainty. 
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One roadblock is that many of these sources of 
uncertainty cannot be quantified probabilistically. 

7. CONCLUSION 
This chapter offers a brief overview of the 

technology developed at Los Alamos National 
Laboratory in support of engineering verification 
and validation programs. The material presented 
is based to a large extent on a tutorial taught at 
the Los Alamos Dynamics Summer School [1]. 
The tools developed are applied to the validation 
of a non-linear plasticity model. The technology 
includes code and solution verification, statistical 
sampling, design of experiments, screening, 
metrics for test-analysis correlation, surrogate 
modeling, and calibration. 

The objective is to provide an estimation of 
prediction accuracy when the plasticity model is 
implemented to calculate strain-stress curves at 
any combination of input settings. Obtaining this 
information over an entire operational space is 
essential to answer questions such as: “How 
appropriate is the model overall?” “Which one of 
several competing models is more appropriate 
for a particular application?” “Which physical 
tests would be useful to improve the predictive 
accuracy of the model?” 
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