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Non-linear Error Ansatz Models for 
Solution Verification in Computational Physics 

Report for FY05 ASC Level-5 Milestone “VV-L5-JA4B-14” 
Submitted in Support of the FY05 ASC Level-2 Milestone #1357 “Code Verification” 

François M. Hemez1 

Los Alamos National Laboratory, X-Division (X-7) 
Mail Stop F699, Los Alamos, New Mexico 87545 

Abstract 

This component of the FY05 level-2 milestone of the ASC “Code Verification” project 
investigates the formulation of non-linear error Ansatz equations for solution verification. The 
common practice in computational physics is to postulate that the error between the numerical 
solution of the discretized Partial Differential Equations (PDE) and the solution of the continuous 
equations only depends on the spatial discretization (or cell size ∆h). The effect of time 
discretization (or time step ∆t) is generally assumed to be a higher-order effect that can be 
neglected. The main goal of this work is to verify the extent to which such practice may be 
incorrect and, therefore, detrimental to the prediction of numerical solution uncertainty based on 
error Ansatz models parameterized with ∆h alone. Limitations of the study are that it is based 
on: specific verification test problems for which the exact solutions of the continuous PDE are 
known (the more difficult case of solution self-convergence is not addressed); a single Eulerian 
code developed under the Los Alamos Code Project “Crestone” (other codes are not 
considered); uniform grids (AMR grids not considered); and constant time stepping (simulations 
are not analyzed with CFL-limited time steps like it is customary in computational physics). Four 
verification test problems are considered: Noh1D and Noh2D (convergent, shocked flow); 
Sedov1D and Sedov2D (divergent, shocked flow); Vortex2D (non-linear, smooth vortex 
evolution); and Wave2D (linear, smooth wave propagation). The analysis consists of solving 
each test problems nine times using different combinations (∆h;∆t) of constant cell size and time 
step values. Lp-norms of the error eh between numerical and exact solutions are then computed. 
Finally, statistical model fitting and analysis-of-variance techniques are deployed to analyze 
which effects such as (∆h)p, (∆t)q, or (∆h)r(∆t)s best explain how the error eh varies. Although 
results clearly depend on characteristics of the test problems (linear or nonlinear equations, 
convergent or divergent flow, smooth or shocked solution, 1D or 2D) and the state variables 
analyzed (density, energy, pressure, velocity), the overall conclusion is that the coupling 
between cell size ∆h and time step ∆t greatly matters to forecast numerical solution uncertainty. 
In addition to showing the importance that effects (∆h)p, (∆t)q, and (∆h)r(∆t)s have on solution 
convergence, a general-purpose procedure based on the design of computer experiments, 
analysis-of-variance, and statistical model fitting is demonstrated for investigating non-linear 
error Ansatz models. Advantages of this approach are that it can be: applied in a somewhat 
black-box mode, that is, independently of the code or verification test problem; automated to a 
great extent; and extended to include non-constant cell sizes (to handle AMR refinement), non-
constant time steps (to handle CFL-limited runs), and other parameters that control the 
discretization of PDE. 
 
                                                 
1 Technical Staff Member in X-Division (X-7); Phone: 505-667-4631; Fax: 505-665-6722; E-mail: hemez@lanl.gov. 
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Executive Summary 

The main goal of solution verification is to develop a general-purpose capability to assess 
the convergence of numerical results. In computational physics, Partial Differential Equations 
(PDE) that govern the evolution of state variables (density, energy, pressure, velocity) are 
discretized for implementation and resolution on finite-digit computer arithmetic. The challenge 
is to verify that the approximate solutions of the discretized PDE converge to the exact solution 
of the continuous equations. In addition to assessing how “closely” the numerical solution 
matches the continuous solution, it is of great practical important to code users and analysts to 
forecast the solution error obtained with a given spatial discretization (or cell size ∆h). 

The dominant paradigm for solution verification postulates that a numerical solver provides 
an approximate solution yh,t that converges to the exact solution y* of the continuous PDE at the 
convergence rate p. Such principle is written as: 

( ) .T.O.H∆hβyye p
1th,

*
h +=−=  (1)

where eh is the solution error defined as the norm ||•||, usually taken from the Lp, Wm,n, or Hp 
families, of the difference between the continuous and numerical solutions; ∆h is a constant or 
characteristic cell size; and β1 is a regression coefficient. Equation (1) is referred to as a linear 
error Ansatz model where the effect of time discretization is included in the Higher Order 
Terms (H.O.T.). Common practice is to obtain several numerical solutions yh,t on successively 
refined grids; compute the error norms ||y*–yh,t||; and fit the unknown coefficients (β1;p) of 
equation (1) to verify that the rate of convergence (p) matches the theoretical value. The 
assumption that time discretization has no significant effect is justified by employing CFL-limited 
time stepping or performing multiple runs with the same (constant) time step ∆t. 

The main goal of this work is to verify the extent to which such practice may be incorrect 
and, therefore, detrimental to the prediction of numerical solution uncertainty based on linear 
error Ansatz models. Equation (1) is generalized to account for the non-linear coupling between 
cell size ∆h and time step ∆t: 

( ) ( ) ( ) ( ) .T.O.H∆t∆hβ∆tβ∆hβyye sr
3

q
2

p
1th,

*
h +++=−=  (2)

Equation (2) is referred to as a non-linear error Ansatz model for solution verification. The 
overall same procedure is applied of obtaining several solutions yh,t by solving the discretized 
PDE multiple times with pairs (∆h;∆t) of successively refined cell sizes and time steps. Knowing 
the exact y* and numerical yh,t solutions, the error eh is computed for each run. The unknown 
coefficients (β1;β2;β3;p;q;r;s) are best-fitted to equation (2) and their values indicate the extent to 
which the coupling between cell size ∆h and time step ∆t matters to forecast the solution error. 

Four code verification test problems for which closed-form, exact solutions y* of the 
continuous PDE have been published are considered for the analysis. Although relatively 
simple, these problems combine linear or non-linear wave propagation to smooth or 
discontinuous (shocked) solutions. The test problems solve the Euler equations of 
compressible, inviscid, and non-heat conducting gas dynamics. They are referred to as: Noh1D 
and Noh2D, a convergent, shocked flow problem; Sedov1D and Sedov2D, a divergent, shocked 
flow problem; Vortex2D, a non-linear, smooth vortex evolution; and Wave2D, a linear, smooth 
wave propagation. 

Each test problem is analyzed with three constant cell size values ∆h = (∆hC | ∆hM | ∆hF) 
where ∆hC, ∆hM, and ∆hF denote the coarse, medium, and fine refinement levels. Likewise, 
three constant time step values ∆t = (∆tC | ∆tM | ∆tF) are defined. This choice results in a full-
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factorial design of computer experiments with (2 variables)3 levels = 9 total runs. All runs are 
performed on the QSC machine at Los Alamos National Laboratory with the code RAGE 
(release 2005.03.31.000) and using constant cell sizes in all spatial directions (that is, no AMR 
refinement) and forced time stepping (that is, no CFL-limited runs). RAGE is a Eulerian hydro-
dynamics code developed under the Los Alamos Code Project “Crestone”. Figure 1 illustrates 
the errors eh of the density, energy, pressure, and velocity solutions for the four test problems. 

 
Figure 1. Solution errors obtained for four verification test problems. 

Figure 1 shows the L2 norms of the differences between exact and numerical solutions for four verification test 
problems. The dashed blue vertical lines separate the test problems, from left to right: Noh1D; Noh2D; Sedov1D; 
Sedov2D; Vortex2D; and Wave2D. The symbols represent different state variable solutions: density (blue circle); 
energy (pink square); pressure (red diamond); and velocity (black star). Runs performed on the QSC machine using 
the hydro-code RAGE (version 2005.03.31.000). 

The analysis consists of fitting equation (2) to the data sets illustrated in Figure 1 for each 
test problem. Previously published statistical model fitting and ANalysis Of VAriance (ANOVA) 
techniques are used to analyze which effects (∆h)p, (∆t)q, or (∆h)r(∆t)s best explain how the error 
eh varies. Basically, this approach consists of answering questions such as: “What controls the 
variability of errors eh observed in Figure 1? Is the effect (∆h)p of cell size the most significant 
one? Is the effect (∆t)q of time step also significant?” Beyond the assessment of which effects 
most matter to forecast the solution error, the statistical model fitting procedure also identifies 
the functional form of equation (2) that best-fits the data sets, its coefficients, and their posterior 
probabilities in a Bayesian sense. 

A high-level illustration of the results is provided in Figure 2. Errors eh obtained for the four 
test problems are analyzed simultaneously using a first-order ANOVA. The four effects 
considered are: 1) cell size ∆h; 2) time step ∆t; 3) problem type “id”; and 4) a variable “dmy” 
initialized at random. Because their influence factors are, on one hand, greater than those of 
variable “dmy” and, on the other hand, similar in magnitude to those of variable “id”, Figure 2 
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demonstrates that both cell size and time step are significant to forecast the solution error. It is 
emphasized that the results illustrated in Figure 2 do not provide useful information to 
understand which error Ansatz model is most appropriate for a particular test problem. The test 
problems are analyzed individually in the report and results are shown to depend not only on 
their characteristics (1D vs. 2D, convergent vs. divergent vs. periodic flows, linear vs. non-linear 
equations, smooth vs. shocked solutions, etc.) but also on the state variable solutions (density, 
energy, pressure, or velocity). 

 
Figure 2. Results of an analysis-of-variance with four verification test problems. 

Figure 2 illustrates an analysis-of-variance of the data sets shown in Figure 1. The R2 statistic estimates Pearson's 
coefficient of correlation between values of a given factor (such as ∆h, ∆t) and values of the error eh. A large R2 
indicates that the corresponding factor is important to explain how the error varies. The colors represent different 
state variable solutions: density (dark blue); energy (light blue); pressure (gold); and velocity (burgundy). The first 
two factors shown on the horizontal ordinate are cell size (∆h) and time step (∆t). The 3rd factor is the test problem 
(id) and the 4th factor is a “dummy” variable initialized at random (dmy). The ANOVA results show that both cell 
size ∆h and time step ∆h are significant to predict the value of the solution error eh. Comparison with the 
significance levels of variables “id” and “dmy” provides two sanity checks: 1) the importance factors of ∆h and ∆t 
should be greater than those of “dmy” since the latter is a variable that has no effect on the solution error; 2) if they 
are indeed significant, then the importance factors of ∆h and ∆t should be similar to those of variable “id” because 
the latter represents the test problem as id = (Noh1D | Noh2D | Sedov1D | Sedov2D | Vortex2D | Wave2D). 

The analysis is implemented through a dedicated software package called FEAST (Fitting 
Error Ansatz in Space and Time). FEAST is a collection of MATLABTM functions currently 
specialized to the four aforementioned test problems. For a given test problem, FEAST provides 
a design of computer experiments (full factorial, two-level orthogonal array, Monte Carlo, or 
Latin Hypercube sampling); writes the corresponding input decks; and writes a macro-command 
to execute the individual runs on the QSC machine. Once the runs have been completed and 
transferred back from QSC, FEAST uploads the text dump files (obtained after post-processing 
the ASCII dump files of RAGE with AMHCTools); extracts the density, energy, pressure, 
velocity, and temperature solution fields; computes the error norms; and performs first-order 
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ANOVA, linear interaction ANOVA, deterministic model fitting, or statistical model fitting. About 
5,000+ lines of codes have been written that can easily be extended to include other verification 
test problems, design of computer experiments, or analysis techniques. 

The overall conclusion is that the coupling between cell size and time step greatly 
matters to forecast numerical solution uncertainty. In addition to showing the importance 
that effects (∆h)p, (∆t)q, and (∆h)r(∆t)s have on solution convergence, a general-purpose 
procedure based on the design of computer experiments, analysis-of-variance, and statistical 
model fitting is demonstrated for investigating non-linear error Ansatz models. Advantages of 
this approach are that it can be: applied in a somewhat black-box mode, that is, independently 
of the code or verification test problem; automated to a great extent; and extended to include 
non-constant cell sizes (to handle AMR refinement), non-constant time steps (to handle CFL-
limited runs), and other parameters that control the discretization of PDE. 

Limitations of the study are that it is based on: specific verification test problems for which 
the exact solutions of the continuous PDE are known (the more difficult case of solution self-
convergence is not addressed); a single Eulerian code developed under the Los Alamos Code 
Project “Crestone” (other codes are not considered); uniform grids (AMR grids are not 
considered); and constant time stepping (simulations are not analyzed with CFL-limited time 
steps like it is customary in computational physics). These limitations will be addressed in future 
work. 
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1. Introduction 

Summary: The dominant paradigm for solution verification postulates 
that solvers provide approximate solutions that converge monotonically 
to the solution of the continuous equations. Conventional error Ansatz 
models for solution verification, therefore, account for linear and space-
only discretization effects. Abnormal behaviors, such as oscillation or 
stagnation of numerical solutions as grids are refined, seem to indicate 
that other effects contribute to the numerical error. This study proposes 
to account for time discretization and to include the potential non-linear 
coupling between space and time effects. Another contribution is to 
establish the usefulness of statistical analysis techniques, such as the 
design of computer experiments, analysis of variance, and statistical 
model fitting, for solution verification. Limitations imposed to restrict the 
scope of the study are mentioned. They include focusing the study on 
the development of error Ansatz models; neglecting time-varying effects 
in the model parameters; and applying a single Eulerian hydro-code. Six 
objectives suggested to serve as evaluation criteria for completion of 
this level-5 component of the Code Verification project are listed. Finally, 
the contribution of this study to the broader context of quantification of 
numerical solution uncertainty is discussed. 

Solution verification aims at developing a general-purpose capability to assess the 
convergence of numerical solutions. In computational physics and engineering, Partial 
Differential Equations (PDE) that govern the evolution of state variables are discretized for 
implementation and resolution on finite-digit computer arithmetic. The challenge is to verify that 
the approximate solutions of the discretized equations converge to the exact solution of the 
continuous equations. In addition to assessing how “closely” the numerical solution matches the 
continuous solution, it is often of great importance to verify that the observed convergence rate 
matches the one that should theoretically be provided by the numerical solver. 

Solution verification can therefore be defined as a scientifically rigorous and quantitative 
process for assessing the mathematical consistency between continuum and discrete 
variants of PDE used to represent a reality of interest [5]. In simple terms, verification 
involves the comparison between the numerical solutions obtained from a calculation and a 
reference solution for a number of code verification test problems. One of the difficulties of 
solution verification resides in the fact that the exact solution of the continuous equations can be 
obtained analytically only in a few special cases that either feature a simple geometry, smooth 
dynamics, linearized operators, or combinations of the above. Few verification test problems 
exist that offer closed-form solutions. When they do, their applicability to the range of physics 
that must be simulated and verified for practical applications is limited if existent at all. 

In general, one talks of code verification when the solution of the continuous equations 
can be derived analytically and in closed form, hence, providing a reference to which numerical 
solutions are compared. If the system of equations or problem setup are complicated enough 
that its continuous solution cannot be derived, then one talks of solution verification or 
solution self-convergence because no reference is available. Note that closed-form solutions 
sometimes involve approximation techniques such as the spectral decomposition or truncated 
series expansion. Even though this is strictly speaking not a correct statement, it is contended 
that obtaining a high-accuracy approximation of the continuous solution, approximation whose 
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degree of accuracy can be controlled explicitly, qualifies as code verification activity.2 This 
example illustrates that the boundary between code verification and solution verification is not 
crisp. What is unambiguous is the fact that any verification activity for which the degree of 
accuracy of the exact solution of the continuous equations cannot be controlled explicitly falls 
into the realm of solution verification. 

Table 1-1. Classification of code and solution verification activities. 

Verification Activity Math. Consistency Error Prediction 

Software quality assurance N/A N/A 
Code debugging N/A N/A 
Code-solution comparison •  
Assessment of convergence rates •  
Evaluate a discretization error model •  
Estimate errors for given length scale  • 
Estimate length scales for given error objective  • 

One can alternatively categorize verification activities either as mathematical consistency 
or error/length-scale prediction. Table 1-1 makes this point by assigning verification activities 
to one or the other. The bottom line is that it is important to develop a methodology for code and 
solution verification by which specific test problems (with or without analytical solutions) can be 
identified for specific applications; solution error models can be identified; and these models can 
be used in a predictive mode to estimate the error of a numerical simulation given parameters 
such as the scale and time lengths. 

The introduction is organized in six parts. Section 1-1 discusses the background of solution 
verification and motivates this investigation. Section 1-2 briefly defines what the study consists 
of and its scope is discussed in further details in Section 1-3. The general technical objectives 
suggested to serve as criteria for the evaluation of this component of the milestone are given in 
Section 1-4. Section 1-5 attempts to define this study in the broader context of the quantification 
of numerical solution uncertainty. Finally, Section 1-6 explains how the report is organized. 

1.1 Background and Motivation 
The dominant and only general-purpose paradigm for solution verification postulates that 

the numerical solver provides an approximate solution yh,t that converges monotonically to the 
solution y* of the continuous equations at the convergence rate p such that: 

( ) .T.O.H∆hβyy* p
1th, +=−  (1-1)

where ||•|| denotes a norm, usually taken from the Lp, Wm,n, or Hp families, of the difference 
between the continuous and numerical solutions, and ∆h denotes a characteristic volume, cell 
size, or element length of the spatially discretized computational domain. Equation (1-1) is 
referred to as a linear error Ansatz model where the effect of time discretization is explicitly or 
implicitly included in the Higher Order Terms (H.O.T.) [13]. Common practice is to obtain several 
numerical solutions yh,t on successively refined grids; compute the error norms ||y*–yh,t||; and fit 
the unknown coefficients (β1;p) of equation (1-1) to verify that the rate of convergence (p) 

                                                 
2 An example is the case where the solution of the continuous equations is given by an infinite series expansion such 
as a Fourier or Bessel (or any other) expansion. Since an infinite number of terms cannot be computed, truncation is 
needed. Strictly speaking, the resulting solution is not the “exact,” continuous solution because it is corrupted by the 
truncation error. Truncation error, however, can be estimated and controlled by ensuring that enough terms are 
included in the expansion. We therefore make the claim that such solution procedure qualifies as code verification. 



FY05 ASC V&V Code Verification Project                                                        Non-linear Error Ansatz Models for Solution Verification 
 

 
Approved for unlimited public release on October 26, 2005                                                                     LA-UR-05-8228, Unclassified 

13

matches the theoretical value.3 The assumption that time discretization has no significant effect 
is justified by employing CFL-limited or stability-limited time stepping or performing multiple runs 
with the same (constant) time step ∆t that verifies the CFL or stability condition with every 
computational grid. 

When the exact solution y* of the continuous equations cannot be obtained analytically, 
solving equation (1-1) for the regression coefficient (β1) and convergence rate (p) must rely on a 
simplified version of the error Ansatz model, as well as several approximations yh,t obtained 
from calculations made with successively refined grids. A simplified version of equation (1-1) is 
generally postulated where the norm of the solution error ||y*–yh,t|| is replaced by a point-wise 
difference between exact and numerical solutions: 

( ) .T.O.H∆hβy*y p
1th, ++=  (1-2)

The advantage that such simplified error Ansatz model offers over equation (1-1) is that the 
exact-but-unknown solution y* can be estimated using, for example, the method of Richardson 
extrapolation [22]. 

The approach to solution verification illustrated by equation (1-2) relies on three strong, yet 
somewhat unverified, assumptions. First, convergence of the solutions yh,t must be monotonic. It 
implies that the discretization variables, such as space ∆h, time ∆t, angle ∆θ, or frequency ∆ν, 
are selected to yield numerical solutions in the asymptotic domain of convergence. Whether or 
not a particular choice of ∆h, for example, provides “near-to-converged” solutions is generally 
not known a priori and can only be verified a posteriori at the risk of making equations (1-1) and 
(1-2) irrelevant. Second, the estimate ŷ* must be “sufficiently close” to the exact-but-unknown 
solution y* of the continuous equations, which cannot be verified unless the numerical solutions 
are, again, known to have asymptotically converged. Third, it is assumed that the higher order 
terms have no significant influence and can be neglected. 

Recent and not-so-recent attempts at applying this paradigm to the verification of numerical 
calculation for thermal, structural, or hydro-dynamics problems have reported “oscillations” or 
“stagnation” of the solution as the grid size is reduced, ∆h  0, which may indicate that some of 
the aforementioned assumptions are not satisfied. Oscillatory convergence occurs, for example, 
at shock, rarefaction, or discontinuous boundaries created by contact conditions, all of which are 
important for non-smooth problems. A key operational issue is that such observations negate 
the commonly accepted belief that “more accuracy results from more zones or cells” [25]. 
Other practical difficulties include how to meaningfully define a characteristic time step (∆t) or 
grid size (∆h) in conjunction with Adaptive Mesh Refinement (AMR) studies or implicit time 
integration where these discretization variables can vary during the analysis. 

1.2 Brief Definition of the Study 
This component of the fiscal year 2005 Code Verification project of the Advanced Scientific 

Computing (ASC) program at Los Alamos investigates the correctness of formulating error 
Ansatz models for solution verification such as illustrated by equations (1-1) and (1-2). It 
proposes to develop, if appropriate, alternative error Ansatz models that account for a potential 
non-linear coupling of space and time discretization errors. 

To verify the extent to which the current state-of-the-practice in computational physics and 
engineering may be incorrect and, therefore, detrimental to the prediction of numerical solution 

                                                 
3 See Reference [12]. This reference is an example of state-of-the-practice code verification study where the 
functional form of the solution convergence error Ansatz model is not questioned. 
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uncertainty, equation (1-1) is generalized to account for the non-linear coupling between cell 
size ∆h and time step ∆t: 

( ) ( ) ( ) ( ) .T.O.H∆t∆hβ∆tβ∆hβyy*e sr
3

q
2

p
1th,h +++=−=  (1-3)

Equation (2) is referred to as a non-linear error Ansatz model for solution verification. The 
overall same procedure is applied of obtaining several solutions yh,t by solving the discretized 
PDE multiple times with pairs (∆h;∆t) of successively refined cell sizes and time steps. Knowing 
the exact y* and numerical yh,t solutions, the error eh is computed for each run. The unknown 
coefficients (β1;β2;β3;p;q;r;s) are best-fitted to equation (1-3) and their values indicate the extent 
to which the coupling between cell size and time step matters to forecast the solution error. 

The analysis procedure consists of solving a code verification test problem several times 
using different combinations (∆h;∆t) of constant cell size and time step values. Lp-norms of the 
error eh between numerical and exact solutions are computed. Then, statistical model fitting and 
analysis-of-variance techniques are deployed to analyze which effects such as (∆h)p, (∆t)q, or 
(∆h)r(∆t)s best explain how the error eh varies and which effects should be included in the error 
Ansatz equation. 

Beyond investigating the need for non-linear error models and importance of time effects, 
another contribution of this work is to establish the usefulness of statistical analysis techniques, 
such as the design of computer experiments, analysis of variance, and statistical model fitting, 
for solution verification. Fitting space-time error Ansatz models for solution convergence is not a 
novel idea and the contribution of previously published work is recognized [14]. However, the 
analysis techniques used in this effort are consistent with the interpretation of solution 
verification being an exercise in the quantification of uncertainty that originates from numerical 
discretization and resolution with finite-digit arithmetic. 

1.3 The Restricted Scope of the Study 
One of the main challenges of developing a general-purpose methodology for analyzing 

solution convergence error is that the exact solution y* of the continuous PDE may be unknown. 
The fact is it will almost always be unknown for real-world applications that feature non-trivial 
geometries, coupled physics, and complicated boundary or initial conditions. It is emphasized 
that the effort reported in this report is a first step towards the development of a methodology, 
therefore, restricted to the particular case of solution verification. Although more general and, 
arguably, more useful in terms of practical applications, the case of solution self-convergence is 
not addressed here. 

It is also noted that the Method of Manufactured Solutions (MMS) is available to construct 
exact solutions for arbitrary systems of continuous or discretized equations [23]. Application of 
the MMS, however, seems most appropriate to build exact solutions that can be back-
propagated through the code with the purpose of identifying programming errors. The invasive 
nature of the MMS, that requires the modification of source codes to enable, for example, the 
implementation of arbitrarily general forcing functions, makes this method unsuitable to obtain 
exact solutions from black-box codes. It is therefore not intended to make use of the MMS to 
build exact solutions for this investigation, hence, restricting the code verification test problems 
used to simple ones. Constructing analytical or numerical solutions with the MMS or other 
techniques, such as symmetry group and Lie algebra [3], will be the focus of future work. 

Other techniques that may be brought to bear to study the convergence of numerical 
solutions include error bound analysis and Modified Equation Analysis (MEA). For example, 
MEA can be employed to quantify the truncation error provided by numerical integration of a 
system of equations. It produces the actual equation that the computer is solving numerically, 
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that is, the combination of original equation and local truncation error where “local truncation 
error” is defined as the truncation error obtained by advancing the solution by a single time step 
(as opposed to the global truncation error). Understanding the effect of the local truncation error 
is important because “the accuracy of a numerical method is related to how well the 
balance between the different physical processes is preserved in the time integration 
scheme” [16]. Approaches such as error bound analysis and the MEA are not considered in 
this work, not by lack of interest but in an attempt to keep the investigation focused on the 
analysis of solution convergence error Ansatz models. It is recognized that these approaches 
are good candidates for future research. 

It is also recognized that the contribution to solution convergence error of various effects, 
such as spatial discretization (∆h)p, temporal discretization (∆t)q, or space-time coupling 
(∆h)r(∆t)s, may change with time during the numerical simulation. This is because, as various 
physical effects are exercised in different proportions, the dominant contributor to the overall 
numerical error is not expected to remain the same. The effect on convergence, for example, of 
time discretization early during a hydro-dynamic simulation may be more pronounced than its 
effect late in the simulation. Likewise, the mechanism by which solution error is generated and 
accumulated may vary. Inadequate spatial discretization at some instants of the simulation may 
be replaced as dominant source of solution error by truncation errors at other times. 

These remarks imply that the regression coefficients βk of equations (1-1) to (1-3), as well 
as exponents (p;q;r;s), may be a function of time and/or space. To keep the study practical, any 
time-dependence or space-dependence of regression coefficients and exponents of the error 
Ansatz model is assumed to remain negligible and the results discussed in the report are limited 
to time-invariant (not time step-invariant) and space-invariant polynomial error Ansatz models. 
Other components of the Code Verification project are investigating some of these issues with, 
for example, the calculation of spatially distributed “conventional” error Ansatz models [24] 
based on equation (1-2) and spatially distributed grid convergence indices for AMR grids [8]. 

As far as the physics are concerned, the focus of this investigation is on smooth and non-
smooth (shocked) hydro-dynamics problems represented by the non-linear Euler equations of 
compressible, inviscid, and non-heat conducting gas dynamics. Because finding the “correct” 
error Ansatz model is problem-specific and code-dependent, emphasis is placed on developing 
a flexible, general-purpose capability that accommodates non-linear Ansatz models represented 
by equation (1-3) as well as the conventional state-of-the-practice captured in equation (1-1). 

Four code verification test problems for which closed-form, exact solutions y* of the 
continuous PDE have been published are considered for the analysis. Although relatively 
simple, these problems combine linear or non-linear wave propagation to smooth or 
discontinuous (shocked) solutions. The first test problem is the Noh problem, a convergent and 
shocked flow. The second test problem is the Sedov problem, a divergent and shocked flow. 
The third test problem is a vortex evolution problem that features a non-linear but smooth 
solution. The fourth test problem is a wave propagation problem with linear and smooth solution. 

For simplicity, the analysis is restricted to the particular case of solution verification where 
the solution of the continuous equations is known (solution self-convergence is not considered 
here); with a focus on hydro-dynamics problems analyzed with uniform grids (∆h = constant, no 
AMR refinement) and forced time stepping (∆t = constant, no CFL-limited run); and applied only 
to the Eulerian hydro-code RAGE that is a code product developed under the Los Alamos Code 
Project “Crestone”. 
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1.4 General Technical Objectives 
The description of general technical objectives is extracted from the fiscal year 2005 Code 

Verification project level-2 milestone plan [5]. The four objectives inserted below are suggested 
in Reference [5] to serve as evaluation criteria for completion of this level-5 component of the 
project. The four general technical objectives are the following ones: 

1) Review the relevant solution verification literature and error Ansatz 
model alternatives. 

2) Demonstrate a general-purpose methodology for developing and 
analyzing error Ansatz models. 

3) Perform the analysis and interpretation for several hydro-dynamics 
problems to be defined, but that should cover the range of 
linear/non-linear and smooth/non-smooth applications. 

4) Write and submit an internal report and the corresponding 
presentation materials. 

In addition, the milestone plan suggests that progress toward the completion of steps 5 and 6 
below be reported at the end of the fiscal year, that is, October 2005: 

5) Develop and archive an error Ansatz analysis code in Fortran or 
explain what it would take to integrate non-Fortran code into an ASC 
(or other) testing harness. 

6) Write and submit a journal article. 
This report is submitted as evidence that objectives 1-4 above are completed. Objective 5 is 

completed for the most part, although software for error Ansatz modeling and analysis was 
developed within the programming environment of MATLABTM and not in the Fortran language. 
Progress towards the completion of objective 6 has been achieved by submitting a contribution 
to the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) 
Conference to be held in Newport, Rhode Island, on May 1-4, 2006 [11]. This contribution has 
been accepted in the technical program and scheduled in a specially developed session 
dedicated to the Verification and Validation (V&V) of computational models. 

1.5 Where Does the Study Fit in the Long-term Context of Verification? 
The approach proposed in this report for developing solution convergence error Ansatz 

models applies to numerical solutions of space-dependent and time-dependent PDE. It is not, 
however, intended to be restricted to this class of problems. The long-term vision to which this 
work makes a (small) contribution is articulated around two main concepts. 

First, it is reasonable to forecast that, as testing harnesses are developed and automation 
of repetitive tasks is improved, one may eventually be able to specialize the error Ansatz model 
developed to study solution convergence to a given code, physics, algorithm, or output quantity. 
The current paradigm in computational physics and engineering is that “one fits all” where the 
functional form of a solution convergence error model is restricted to space-dependent effects. 
This approach may be reasonable for some problems, such as calculations performed on AMR 
grids where the time step is defined by the CFL condition, but plenty of evidence also indicates 
that it may not always work. The long-term objective is to develop, not a single, but a catalog of 
error Ansatz models and categorize them by code, physics, algorithm, and output quantity of 
interest (density, pressure, flow velocity, energy, temperature, etc.). 
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To accomplish this first objective, semi-automated techniques, such as those proposed in 
this study, to develop and analyze error Ansatz models for solution verification will have to be 
demonstrated. 

The second objective around which a long-term vision for solution verification is articulated 
is to develop a rigorous method for predicting confidence bounds of the (unknown) solution 
of the continuous equations, given time and length scales selected by the code user for a 
particular application. Only timid attempts have been made so far in computational physics to 
propose bounds of numerical solution uncertainty. These are based, for example, on ad-hoc 
grid convergence indices, and a rigorous connection to uncertainty bounds at given statistical 
confidence levels is not made [21]. Statistical analysis techniques, such as those proposed in 
this study, may be brought to bear to calculate rigorous uncertainty bounds in the general case 
of solution self-convergence where the exact solutions of continuous equations are unknown. 

 
Figure 1-1. Illustration of an error Ansatz model and its lack-of-fit uncertainty bounds. 

Figure 1-1 illustrates the concept of uncertainty quantification for solution convergence by 
showing predictions of a space-time Ansatz model similar to equation (1-3). The solution errors 
used to best-fit the parameters of equation (1-3) are defined as differences between exact and 
numerical solutions for the vortex evolution problem discussed in Sections 6 and 7. Computer 
runs are performed at various settings of (constant) cell sizes and CFL conditions. Uncertainty 
bounds shown as box-plots around the mean solution error (red solid lines) are obtained from a 
statistical boot-strapping technique, and they represent the lack-of-fit between data points and 
mean predictions of the error Ansatz model. 
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It is interesting to note that these uncertainty bounds tend to converge as the grid is refined. 
This observation suggests new approaches to assess solution convergence based on, not only 
the derivation of space-time error Ansatz equations, but also a description of how the lack-of-fit 
residuals (||y*–yh,t|| – êh) behave as a function of space and time discretization. Because the 
uncertainty bounds such as those shown in Figure 1-1 are obtained from statistical analysis, a 
rigorous connection to uncertainty bounds at given statistical confidence levels may be possible. 

1.6 Organization of the Report 
The report is organized in seven sections. Section 1 is the introduction that motivates the 

study and defines its scope and evaluation criteria. Section 2 introduces the main equations and 
notations used throughout the report. Typical issues of solution verification are discussed in 
Section 3 in non-technical terms. Section 4 is an investigation into the theoretical foundations of 
solution verification. Section 5 briefly summarizes the statistical approach proposed to screen 
the significant space or time effects and fit statistical error Ansatz models. Section 6 provides an 
illustration using the vortex evolution test problem and Section 7 discusses results obtained with 
the four code verification test problems. 

The reader is made aware that the individual Sections that compose the report are, for the 
most part, independent from one another and can be read separately in non-sequential order. 
The reason for structuring the report in such a way is to provide easier access to the material 
presented, at the cost of duplicating some of it. The reader unfamiliar with solution verification 
should start with the introduction (Section 1) and mathematical formalism (Section 2). A subject-
matter expert, on the other hand, can directly read details of the analysis approach proposed 
(Section 5) and numerical results (Sections 6 and 7). 
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2. Mathematical Formalism 

Summary: Section 2 introduces the mathematical formalism used to 
investigate the convergence of numerical solutions. Discretized partial 
differential equations are based on the principle that the numerical 
solution converges to the exact-but-unknown solution of the continuous 
equations as the discretization is refined. In most practical cases, it 
means attempting to select “small enough” grid sizes and time steps. If 
the exact solution is known, convergence can be verified by fitting a 
polynomial equation where the error between exact and numerical 
solutions decreases monotonically as the grid size is reduced. Solution 
verification, in general, neglects the effect that coupling between space 
and time resolutions may have on convergence, or assumes that all 
calculations can be performed with a common, constant time step. 
Alternate error models are introduced that explicitly account for the non-
linear coupling between space and time resolutions. The fact that the 
exact solution may not be known is also briefly addressed and the main 
equations of one approach known as the Richardson extrapolation are 
given. The purpose is simply to introduce the formalism and main 
equations of solution error verification. Underlying assumptions and 
resolution methods are discussed in the following Sections. 

In this document a numerical model, or “code,” that discretizes a set of coupled Partial 
Differential Equations (PDE) over a computational domain is denoted by: 

( )∆t∆h;My th, =  (2-1)
where the independent variables discretized are denoted by the generic symbols h and t. The 
variables h usually represent the spatial discretization, whose characteristic size is denoted by 
∆h. Figure 2-1 shows examples of ∆h, such as the size of a grid or angular discretization. 
Likewise, the symbol ∆t in equation (2-1) represents a characteristic time step of the numerical 
simulation. 

 
Figure 2-1. Illustration of grid or angular discretization sizes ∆h. 

∆h = ∆x 

∆h = ∆y

∆h = ∆θ 
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The fact that neither ∆h nor ∆t may be constant during the numerical simulation is not 
relevant for the immediate discussion. This will be addressed later. What is important is that 
solvers based on the principle of discretization expect that the numerical approximation they 
calculate converges to the solution of the continuous equations as the discretization is refined: 

y*ylim th,0∆t0,∆h
=

→→
 (2-2)

where y* denotes the exact solution of the continuous equations. Such formalism is common to 
all solvers based on discretization in computational physics and engineering, whether finite 
differences, finite elements, or finite volumes, among other approaches, are implemented. 

Whether the exact solution y* is known from a closed-form, analytic expression or highly-
accurate numerical solution or not has important implications. One talks of code verification 
when the objective is to verify that computations performed by the code are correct. Rigorously 
speaking, code verification requires that the exact solution be known for comparison with one or 
several numerical approximation(s) yh,t. One talks of solution verification when the objective is 
to verify that the discretization provides asymptotically converged solutions. The terminologies 
“calculation verification” and “solution self-convergence” are also encountered in this case. 

To assess the degree to which the numerical approximations have converged, one 
compares them to a reference solution. Clearly the best choice of reference solution is, again, 
the exact solution y* of the continuous equations. If the exact solution is unknown, then a 
numerical estimation obtained from solving the discretized PDE on the finest grid, or an 
extrapolation based on several grid calculations, can be used as reference solution. In this 
document the terminology “solution verification” is used somewhat indiscriminately but the 
context makes it clear whether or not the exact solution is known. 

2.1 Linear and Non-linear Error Ansatz Models 
The dominant and only general-purpose paradigm for solution verification postulates that 

the numerical solver provides an approximate solution yh,t that converges monotonically to the 
exact-but-unknown solution y* at a convergence rate p such that: 

( ) .T.O.H∆hβyy p
1th,

*
pL +=−  (2-3)

where ||•|| denotes a Lp norm of the difference between the continuous and numerical solutions.4 
Clearly an error Ansatz5 model such as equation (2-3) either assumes that the variable ∆h is the 
only one whose discretization has any effect on the accuracy of the numerical approximation, or 
that the other discretization variables are kept constant. In the case of coupled PDE integrated 
in time over a computational grid, this implies that the time step ∆t must be kept constant while 
satisfying the most stringent of Courant-Friedrichs-Levy (CFL) conditions.6 

                                                 
4 Note that the symbol p of the Lp norm has nothing to do with the symbol p that denotes the order of convergence of 
the numerical solver. For example, a quadratic convergence rate (or p = 2) can be assessed with L1, L2 or L∞ norms. 
This notation should not lead to confusion because the terminology Lp is well recognized. 
5 The German word “der Ansatz” can be translated as “approach” or “estimate” in English, among other meanings. In 
the mathematical context it means “statement.” An error Ansatz model refers to the equation(s) defined by an analyst 
to verify solution convergence. 
6 The CFL condition states that, in any time-marching computer simulation, the time step ∆t must be less than the 
time for some significant action to occur. The CFL condition was originally formulated in the context of compressible 
fluid flows, where the time step must be kept smaller than the time it takes for a sound wave to propagate through the 
computational domain. Explicit time integration schemes introduce similar constraints due to their conditional stability 
conditions, not because of physical constraints. 
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The approach proposed here for solution verification investigates other error Ansatz models 
such as non-linear models that introduce a coupling between the spatial discretization ∆h and 
the temporal discretization ∆t. In cases where it is suspected that space and time both influence 
convergence, or in practical situations where performing numerical simulations while varying ∆h 
but keeping ∆t constant is not possible, one may wish to verify solution convergence based on 
the generalized equation: 

( ) ( ) ( ) ( ) .T.O.H∆t∆hβ∆tβ∆hβyy sr
3

q
2

p
1th,

*
pL +++=−  (2-4)

where p and q denote the convergence rates in time and space, respectively; r and s are 
convergence rates for the coupling effect between time and space (that may or may not be 
relevant depending on the numerical solver implemented); and (β1;β2;β3) are constant 
coefficients with little physical meaning other than providing sensitivity information. As before 
the Higher-Order Terms (H.O.T.) are ignored in the analysis. 

 
(a) Coarse computational grid of a plate (element size ∆hC). 

 
(b) Fine computational grid of a plate (element size ∆hF). 

Figure 2-2. Coarse and fine finite element grids of a mesh convergence study. 
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Solving equation (2-3) or (2-4) for the coefficient(s) and convergence rate(s) is not possible 
unless several numerical approximations yh,t

(1), yh,t
(2), …, yh,t

(N) are obtained from calculations 
made with various combinations of grid sizes (∆h1, ∆h2, …, ∆hm) and, possibly, time steps (∆t1, 
∆t2, …, ∆tn). Figure 2-2 illustrates two computational domains of a solid mechanics application: 
the coarse grid obtained with an element size ∆hC is refined to provide the finer grid whose 
characteristic element size is smaller, ∆hF ≤ ∆hC. Four levels of mesh refinement are used in the 
convergence study of a finite element calculation. 

Evaluating the error Ansatz model (2-3) without accounting for time discretization only 
requires two solutions yh,t

(1), yh,t
(2) obtained from calculations made with two grid sizes ∆h1, ∆h2 

and a common time step ∆t. Details of these calculations are provided in Section 4. 

2.2 Convergence Verification With Extrapolated Solutions 
Assessing the order of convergence and quantifying the solution error is difficult when the 

exact solution y* is not known analytically. Techniques based on the Richardson extrapolation 
have been proposed to replace the exact-but-unknown solution y* by an estimate ŷ from which 
the error Ansatz models can be written as: 

( )
( ) ( ) ( ) ( ) .T.O.H∆t∆hβ∆tβ∆hβyŷ

.T.O.H∆hβyŷ
sr

3
q

2
p

1th,

p
1th,

pL

pL

+++=−

+=−
 (2-5)

Although equation (2-5) may appear similar to the error Ansatz models (2-3) and (2-4), a major 
difference is that the exact-but-unknown solution y* is replaced by an estimate ŷ. Taking this 
important step is valid only to the extent where the numerical solutions yh,t

(1), yh,t
(2), … yh,t

(N) have 
converged asymptotically. Of course asymptotic convergence cannot be guaranteed simply by 
choosing “small” grid sizes and time steps, nor can asymptotic convergence be verified a priori. 
This leads to a “catch-22” situation: to build an error Ansatz model an estimation of the exact-
but-unknown solution is needed, which requires a sequence of converged numerical solutions. 
However asymptotic convergence cannot be assessed before analyzing the error Ansatz model. 

Finally it is emphasized that there exists no closed-form solution to equations (2-5). The fact 
that an extrapolated solution ŷ is embedded in the calculation of the Lp norm of the error and the 
potential coupling term (∆h)r(∆t)s between grid size and time step make it impossible to find an 
analytical solution in the general case. The only exception is when the prediction y is a scalar 
quantity: this simplifies the equations because the Lp norm reduces to an absolute value. The 
main equations of this special case are summarized below for completeness. 

2.3 Solving the Error Ansatz Equations Explicitly 
In the case of a scalar prediction, it is often assumed that the error Ansatz model is: 

( ) .T.O.H∆hβŷy p
1th, ++=  (2-6)

Because equation (2-6) features three unknown (ŷ; β1; p), a minimum of three equations are 
needed. These are obtained by calculating numerical solutions using a coarse grid, a medium 
grid, and a fine grid. Neglecting any influence of the time integration and neglecting the higher-
order terms leads to the following system of equations: 

( )
( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

+=

+=

+=

p
F1F

p
M1M

p
C1C

∆hβŷy

∆hβŷy

∆hβŷy

 (2-7)
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where yC, yM, and yF denote numerical solutions obtained from the coarse mesh (grid size ∆hC), 
medium mesh (grid size ∆hM), and fine mesh (grid size ∆hF), respectively. 

Note that this formalism implies that convergence occurs monotonically “from above” when 
β1 ≥ 0: the solutions obtained from several grids remain greater than the extrapolated solution, 
yC ≥ ŷ, yM ≥ ŷ, and yF ≥ ŷ. Monotonic convergence “from below” can be accommodated in a 
similar way with a negative regression coefficient, β1 ≤ 0. The formalism of equations (2-6) and 
(2-7), however, breaks down if convergence is oscillatory or if it stagnates as often observed in 
practice. 

An illustration of non-monotonic convergence is provided in Figure 2-3. The grids shown in 
Figure 2-2, together with two other levels of refinement, are used to extract the 5th resonant 
frequency from the linear mass and stiffness matrices of a finite element representation of the 
plate.7 Figure 2-3 illustrates the convergence of the frequency ω5 as a function of mesh size ∆h. 
Even though this calculation is linear, well-behaved, and the frequency ω5 represents an integral 
quantity (ratio of internal energy to kinetic energy for the 5th mode shape), it can be observed 
that convergence is not monotonic. It is difficult to conclude if failure to match the theoretical 
convergence rate (p = 2 in this case because quadratic elements are used in the calculation) is 
due to non-converged solutions, inappropriate error Ansatz model, or a combination of both. 

 

Figure 2-3. Frequency of the 5th resonant mode versus mesh size. 

Under the aforementioned assumptions (scalar prediction; the convergence rate is affected 
by the grid size only; convergence is monotonic), the solution of the system of equations (2-7) is 
obtained analytically in the case of a constant refinement between the three grids: 

( )Rlog
yy
yylog

p MF

CM
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=  (2-8)

where R denotes the refinement ratio (R > 1) defined as ∆hC = R ∆hM and ∆hM = R ∆hF. It is 
emphasized that a closed-form solution can be arrived at only if the refinement ratio is constant. 
The Richardson extrapolation of the exact-but-unknown solution is: 

1R
yyyŷ p

MF
F −

−+=  (2-9)

                                                 
7 The mass and stiffness operators are discretized into matrices denoted M and K, respectively. The mode shapes φk 
and natural frequencies of vibration ω k are the eigen-solutions of the spectral decomposition: K φk = ω k

2 M φk. 

Mesh Size, ∆h (cm)
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where the order of convergence is either the theoretical value or the one calculated in equation 
(2-8). The regression coefficient β1 can easily be back-calculated from equations (2-7) to (2-9). 

2.4 Discussion 
Verification activities are introduced and categorized broadly into code verification and 

solution (or calculation) verification. Roughly speaking the main difference between the two is 
whether the objective is to verify correctness of the code implementation or verify the degree to 
which the discretization provides an asymptotically converged solution. 

A complicating factor of code and solution verification is the availability of the exact solution 
of the continuous PDE for comparison with the numerical approximation(s). Code verification 
requires that the exact solution be known explicitly. Comparing a numerical approximation to the 
exact solution provides assurance that the PDE are implemented, discretized, and solved 
correctly, therefore, verifying the code itself. Solution verification can be carried out whether or 
not the exact solution of the continuous equations is known. Availability of the exact solution 
makes it possible to rigorously verify the convergence rate or predict the numerical error 
associated with a given level of grid refinement. One talks of self-convergence study when the 
exact solution is unknown and replaced by an estimate defined from either the finest grid 
calculation or an extrapolation based on solutions obtained from several grid resolutions. 

The discussion presented in this section briefly introduces the framework that has been 
proposed in the literature to verify the convergence of numerical solutions. The solution 
procedure outlined in equations (2-6) to (2-9) is commonly encountered in technical 
publications. It is nevertheless based on strong, yet, rarely discussed or verified, assumptions. 
Assumptions upon which the Richardson extrapolation of equation (2-9) is based are also 
questionable. These issues are raised in Section 3. The discussion stems from surveying 
unclassified studies of interest to the computational physics and engineering communities at 
Los Alamos. Section 4 derives the equations of code and solution verification and, while doing 
so, discusses the assumptions upon which they are based. 
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3. Short-comings of Solution Verification 

Summary: Some of the short-comings of solution verification as it is 
commonly practiced are discussed in non-mathematical terms. The 
focus of the discussion is on issues that affect the development of error 
Ansatz models. Short-comings include, but are not restricted to, the 
seven following issues. 1) Monotonic polynomials cannot capture the 
sometimes oscillatory nature of solution convergence. 2) Space-only 
error models are inappropriate when numerical solutions stagnate as the 
grid is refined; 3) Higher-order terms of the error model are neglected, 
yet, they may contribute to the solution error. 4) The potential coupling 
between spatial and temporal discretization is not accounted for. 5) It is 
unclear how to define characteristic cell size and time step values when 
they vary during the calculation such as, for example, in AMR or CFL-
limited time stepping runs. 6) The Richardson extrapolation employed to 
estimate the solution cannot be generalized easily to space-time error 
models. In cases where a weak formulation of the equations is solved, 
the Richardson extrapolated estimate and the solution of the continuous 
equations may be inconsistent because the two are based on different 
norms. 7) Finally, the role that error Ansatz models can play in the 
estimation of rigorous confidence bounds of the unknown solution 
needs to be explored for solution self-convergence. 

This section is a short summary of issues identified with the “conventional” approach and 
state-of-the-practice for solution verification. These issues are discussed in simple terms, not 
mathematically, and the discussion is focused on problems encountered in the derivation of 
error Ansatz models for solution convergence. Section 4 provides more insight into the potential 
origin of some of these problems by examining the assumptions upon which the mathematical 
formalism for solution verification is built. Although the list below is not exhaustive, the claim is 
made that it captures some of the most important issues regarding the assessment of solution 
convergence based on space-only error Ansatz models such as equations (2-3) and (2-6). 

1) Studies published in the literature and observations of solution convergence behavior 
often report that numerical solutions converge to the exact (known or not) solution of the 
continuous equations with oscillations as opposed to monotonically. Oscillations make it 
somewhat more difficult to assess whether or not the asymptotic range of convergence has 
been reached in the case of solution self-convergence where the solution of the continuous 
equations is unknown. Clearly, non-monotonic convergence is a situation that space-only error 
models such as those of equations (2-3) or (2-6) cannot handle. 

2) Studies published in the literature also report that numerical solutions can “stagnate”, that 
is, convergence to the exact (known or not) solution of the continuous equations becomes 
stationary as the computational grid is refined. This behavior suggests that effects other than 
the spatial discretization may influence solution convergence. This is also a situation that error 
Ansatz models such as those of equations (2-3) or (2-6) cannot handle since they are written as 
function of cell or element size only. 

3) Conventional error Ansatz models may provide a poor goodness-of-fit to the data, that is, 
the polynomial model eh = β1 (∆h)p does not fit the observed solution errors with great fidelity. 
Lack-of-fit is generally detrimental to the prediction of solution error or length scale. 
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Simple solution convergence studies generally neglect (explicitly or implicitly) the effects of 
Higher-Order Terms (H.O.T.) in the polynomial. This may result in poor quality of fit to the data, 
as discussed in the previous bullet. H.O.T. are generally thought to include effects such as (∆h)r 
or (∆h)r(∆t)s that approach zero faster than the main effect (∆h)p as both cell size (∆h) and time 
step (∆t) become vanishingly small. Implicit in the treatment of the H.O.T. is the assumption that 
the computational grid provides numerical values that are in the asymptotic regime whose 
definition is consistent with the error Ansatz model, so that the higher-order contributions can 
justifiably be neglected. Nevertheless, evidence is rarely presented that would validate the 
correctness of such assumption. 

4) Space-only error Ansatz models such as those of equations (2-3) or (2-6) do not account 
for a potential coupling between spatial and temporal discretization or, in the case of solution 
self-similarity, a potential dependence of solution error on the cell size-to-time step ratio (∆h/∆t). 
Time stepping effects are usually neglected, either knowingly or due to omission or negligence. 
The main two mechanisms to eliminate the influence of time are to either run all calculations 
with time steps that satisfy the CFL or stability conditions, or employ the same (constant) time 
step for all calculations. The extent to which these commonly encountered practices guarantee 
independence of the solution convergence error from time effects and/or space-time coupling 
effects is generally not verified. 

5) Defining characteristic cell size and time step values in cases where they vary during the 
numerical simulation is generally not addressed. Cell sizes change, for example, during an 
Adaptive Mesh Refinement (AMR) calculation that tends to concentrate a higher density of cells 
or zones where they are the most needed, that is, in areas of discontinuity or high gradient. 
Refinement such as h-refinement is another example that makes it difficult to define a 
characteristic element size during a calculation. Likewise, time stepping strategies can be 
implemented to adapt the choice of a time step to match an accuracy or stability criterion such 
as encountered in explicit calculations or in CFL-limited runs of hydro-dynamics or 
Computational Fluid Dynamics. It is unclear whether statistics such as the mean or standard 
deviation are pertinent choices, or if the maximum and minimum values should be used. 

6) Is the common practice of defining a “reference” solution by extrapolating the results of 
several calculations, obtained from successively refined grids, appropriate to assess solution 
self-convergence when the solution of the continuous equations is unknown? This practice is 
referred to as the Richardson extrapolation when the error Ansatz model takes the form of 
equation (2-6). It is unclear whether Richardson extrapolation always provides an accurate 
estimation of the unknown solution. Furthermore, its generalization to other error Ansatz 
models, such as space-time models, is not straightforward. 

When the resolution of the equations of motion or laws of conservation relies on a weak 
formulation, should solution self-convergence be assessed on the basis of an error norm that is 
consistent with the norm used to establish the equivalence between the strong and weak 
formulations? If so, the “reference” solution estimated from Richardson extrapolation may be 
inconsistent with the solution of the continuous equations because these two solutions are 
defined in the sense of different norms. 

7) Finally, to what extent can error Ansatz models be used to estimate confidence bounds of 
the unknown solution of the continuous equations? The current state-of-the-practice in 
computational engineering is to rely on the Grid Convergence Index (GCI) to obtain uncertainty 
bounds but a rigorous connection to confidence bounds and statistical confidence levels has 
not, to the best of the author’s knowledge, been demonstrated. 
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4. Conventional Approach to Solution Verification 

Summary: What is referred to in this document as the conventional 
approach to solution verification is presented. Conventional error 
Ansatz models are those that rely on one or several of the five 
assumptions: 1) Assuming monotonic convergence; 2) Neglecting the 
potential coupling between time and space discretizations; 3) Relying 
exclusively on linear equations; 4) Substituting a Richardson 
extrapolation to the exact-but-unknown solution; and 5) Using scalar-
valued quantities in lieu of what should be Lp norms. The intent of this 
section is to explain where each assumption comes into play, how it 
simplifies the equations or solution procedure, and under which 
circumstance it may lead to an inappropriate error Ansatz model. The 
first situation discussed is the case where an exact solution of the 
continuous equations is available. The discussion then proceeds to the 
case where no exact solution is available to better illustrate the 
simplifications made in the derivation of the conventional, Richardson 
extrapolation-based error Ansatz model and its solution. 

This section presents the conventional approach to solution verification. The discussion 
arrives at the same equations as those introduced briefly in Section 2, the main difference being 
that the underlying assumptions are emphasized in a systematic way. The intent is to illustrate 
when the conventional approach to solution or self-convergence verification is appropriate and 
under which conditions some of the assumptions cease to be relevant. 

Several variants to solution verification have been published and the discussion attempts to 
present them under a common logical framework. To explore all situations a progression is 
offered from the case where an exact solution of the continuous equations is available to the 
case where the exact solution is unknown and must be approximated by other means. 

The starting point of solution verification resides in the principle of discretization of strong or 
weak formulations discussed in Section 4.1. The analysis of error Ansatz models where an 
exact solution of the continuous equations is available is presented in Section 4.2. Section 4.3 
generalizes the discussion to the case where the exact solution is not available and must be 
replaced by an extrapolation. A solution procedure based on the Richardson extrapolation is 
derived in Section 4.4 and its underlying assumptions are discussed. Section 4.5 focuses on a 
standardized metric to report solution error convergence known as the Grid Convergence Index 
(GCI). Several misconceptions about the GCI are unraveled. Section 4.6 extends the closed-
form solution obtained for solution verification under the assumption of monotonic convergence 
to the case of non-monotonic convergence. Finally a summary of the assumptions encountered 
throughout this discussion is given in Section 4.7. It is important to reach a clear understanding 
of these assumptions before starting to challenge some of them in Section 5 with a statistical 
approach to derive non-linear error Ansatz models. 

4.1 Developing Solution Error From the Principle of Discretization 
As mentioned in Section 2, the work discussed in this document applies to numerical 

simulations or “codes” that discretize coupled Partial Differential Equations (PDE) over a 
computational domain to make predictions represented symbolically by equation (2-1). For all 
practical purposes, the main independent variables discretized are space and time. The grid 
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size and time step are denoted by ∆h and ∆t, respectively. It is emphasized that this notation 
does not necessarily imply that grid sizes and time steps are constant during the numerical 
simulation. This will be addressed in the sections that present numerical application results. 

Discretization in space and time (and, possibly, other independent variables) is necessary 
because coupled PDE must be solved on the finite-digit arithmetic of computers and no closed-
form solution exists in the case of non-trivial geometry, initial conditions, or boundary conditions. 
Numerical methods are based on the principle that the approximation they calculate converges 
to the solution of the continuous equations as the discretization is refined. This is expressed in 
equation (2-2), repeated here for convenience, as: 

y*ylim th,0∆t0,∆h
=

→→
 (4-1)

Examples of modeling approaches based on the principle of discretization in computational 
physics and engineering include finite differences, finite elements, and finite volumes. 

Finding a numerical solution is difficult when the PDE that govern the evolution of the 
solution dictate a high degree of regularity. For example an equation that features a second-
order derivative requires a solution that is at least C2 differentiable, which may be difficult to 
construct. Some of the modeling approaches previously mentioned, such as the finite element 
and finite volume methods, have in common that the search for a “strong” solution is replaced 
by the search for a “weak” solution. A strong solution is one that satisfies the equations of 
equilibrium or laws of conservation everywhere and at every instant. A weak solution, on the 
other hand, is one that satisfies the equations of equilibrium or laws of conservation in an 
average sense. The verification of the laws of conservation everywhere in the computational 
domain is relaxed, and it is somewhat easier to construct a numerical solution because its 
degree of regularity is lowered compared to that of the strong solution. 

Mathematically speaking the strong solution y* that satisfies the continuous equations at 
every point and every instant solves a generic system of equations such as: 

⎪
⎩

⎪
⎨
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∂∈∀∂=
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0t   at   ,yy

T][0;t   Ω,x   f,)A(y

*
o

*

*

 (4-2)

where A(•) denotes the mathematical operator that represents the continuous PDE; f denotes 
the external forcing function; Ω is the computational domain of boundary ∂Ω; [0; T] is the time 
period of interest; and yo and ∂y are the initial and boundary conditions, respectively. The first 
one of equations (4-2) represents the equations of equilibrium or laws of conservations satisfied 
strongly in the entire domain and at every instant. The second and third equations represent the 
initial and boundary conditions. One constructs a weak solution yh,t that is equivalent to the 
strong formulation (4-2) by discretizing and solving the system of equations that corresponds to 
the weak formulation: 

T][0;t   Ω,Ωx   Z,Zz   ),z;l(f)z;a(y hhhth,th,th,th,th, ∈∀⊂∈∀⊂∈∀=  (4-3)
where a(•;•) represents the “weak” functional form of the operator A(•); l(•;•) is the inner product 
that accounts for the forcing function and boundary terms; and where the test functions zh,t are 
discretized from the appropriate space Zh ⊂ Z. Defining the mathematical spaces to which the 
weak solution yh,t and test functions zh,t  belong depends on the regularity of the operator A(•), 
type of boundary conditions, etc. Examples include the Banach spaces Lp and Sobolev spaces 
Wm,p and Hm = Wm,2. 

This brief discussion about how numerical solutions are constructed is included because it 
is our opinion that it is important, when defining an error Ansatz model, to keep in mind how the 
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numerical solution is constructed. With weak solutions it is natural to postulate that a generic 
class of error Ansatz models is given by the equation: 

( ) .T.O.H∆hβyye p
1Lth,

*
h p

+=−=  (4-4)
where y* denotes the exact solution of the continuous equations. The order of convergence of 
the numerical algorithm is denoted by the symbol p. The symbol β1 is a regression coefficient 
that has little practical interest other than indicating the sensitivity of the discretization error to 
the grid size ∆h.8 

The Lp norm is adopted for simplicity and because Lp spaces are the most general 
functional spaces for all practical purposes. The key point is that, because yh,t represents the 
discretized solution of weakly enforced laws of conservation, convergence must be 
studied in a norm consistent with the one used to establish that the strong and weak 
formulations are equivalent. The natural choice to prove the existence and uniqueness of 
weak solutions and construct error estimators is the so-called “energy norm” defined from the 
weak form of the operator, ||•||2 = a(•;•).9,10 The only rigorous and defendable choice of norm to 
build an error Ansatz model would therefore appear to be the energy norm that is consistent 
with the derivation of the numerical solution. 

This statement may seem like a severe restriction. In practice it is not because properties of 
usual functional spaces make it so that converging in the sense of a given norm implies that the 
solution also converges with other norms, although possibly at different rates. If a function 
belongs, for example, to the Sobolev space Wm,p(Ω), then it automatically belongs to Wk,p(Ω) for 
all k ≤ m. The inclusion “Wm,p(Ω) ⊂ Wk,p(Ω)” means that there exists a positive constant α such 
that ||•||k,p ≤ α ||•||m,p where ||•||k,p and ||•||m,p denote the Wk,p and Wm,p norms, respectively, on the 
domain Ω. Establishing convergence in the sense of the norm Wm,p therefore provides at least 
the same order of accuracy with the norm Wk,p. Likewise establishing convergence in terms of a 
Lp norm implies convergence in terms of any Wm,p norm since “Lp(Ω) ⊂ Wm,p(Ω),” that is, there 
exists a positive constant α such that ||•||m,p ≤ α ||•||p where ||•||m,p and ||•||p denote the Wm,p and 
Lp norms, respectively. 

Studying the convergence of discretized solutions, as opposed to functions that belong to 
infinite dimensional spaces such as discussed in the previous paragraph, is further facilitated by 
the fact that all norms defined over finite dimensional spaces are equivalent. It means that it is 
always possible to find two positive numbers µ1 and µ2 such that: 

hth,1th,22th,1th,1 Hy   ,yµyyµ ∈∀≤≤  (4-5)

                                                 
8 Note that this error Ansatz model is appropriate to verify solution convergence as a function of spatial discretization 
only. Time discretization is excluded from the discussion for clarity, and will be addressed later. 
9 Several theorems have been proven that establish the existence and uniqueness of weak solutions for wide classes 
of problems. The work due to Lax-Milgram and Lions-Magenes, for example, can be cited as it applies to linear elliptic 
and linear parabolic PDE, respectively. (See the reference below.) The norms used to establish the equivalence 
between the strong and weak solutions are usually defined from a(•;•) to take advantage of orthogonality properties 
when a numerical solution is constructed. A posteriori error estimators are also written with the energy norm ||•||2 = 
a(•;•). For example the generic form of error estimators developed for finite element analysis is: 

( ) ( )ΩL2ΩL1th,
*

22 rCRCyy
∂

∂+≤−  

where R denotes an internal residual that accumulates the contributions of out-of-balance forces obtained inside each 
element; ∂r is the boundary residual that accumulates the contributions of tractions at element interfaces; and C1 and 
C2 are positive constants. Although the solution error can be bounded using such inequalities, it does not help to 
assess the order of accuracy as a function of element size ∆h. 
10 See Reference [1]. 
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where ||•||1 and ||•||2 are two norms defined over the finite-dimensional space Hh ⊂ H. The 
inequalities of equation (4-5) show that, if solution verification is studied with the norm ||•||1, then 
the same order of convergence is obtained with the norm ||•||2 as ∆h → 0 since: 

( ) .T.O.H∆hβyy p
11th,

* +=−  (4-6)
implies that: 

( )( ) ( )( ).T.O.H∆hβµyy.T.O.H∆hβµ p
122th,

*p
11 +≤−≤+  (4-7)

Because the inequalities (4-7) are established for all solutions yh,t ∈ Hh and all grid sizes ∆h ≥ 0, 
it follows that: 

( ) .T.O.H∆hβyy p
22th,

* +=−  (4-8)

for “sufficiently small” grid sizes and where the regression coefficient with the second norm (β2) 
is different from the regression coefficient with the first norm (β1). Comparing equations (4-6) 
and (4-8) concludes the proof.11 ■ 

Error Ansatz models can therefore be constructed with any norm when numerical solutions 
result from weak formulations of the equations of equilibrium or laws of conservation. It should 
however be kept in mind that the only rigorous choice, in the sense of choosing a norm that it is 
consistent with the equivalence of weak and strong solutions, is the energy norm, ||•||2 = a(•;•), 
of the problem considered.12 

One final point is made regarding the use of the generic error Ansatz model described by 
equation (4-9) and that can be found in numerous publications on solution verification: 

( ) .T.O.H∆hβyy p
1

*
th, ++=  (4-9)

This error model appears similar to equation (4-4), the main difference being that the numerical 
solution is directly related to the exact solution of the continuous equations. Nonetheless the 
fact that no norm of the error is used is problematic for two reasons. First, equation (4-9) is true 
only to the extent where convergence is monotonic. It means that numerical solutions converge 
to the exact solution from above (that is, yh,t ≥ y*) if the regression coefficient is positive, β1 > 0. 
Likewise numerical solutions converge to the exact solution from below (that is, yh,t ≤ y*) if the 
regression coefficient is negative, β1 < 0. Monotonic convergence may not happen in practice 
for a number of reasons, as illustrated in Section 2 and discussed in Section 3. 

Second, the error Ansatz model (4-9) is defined with an error term (yh,t–y*), not a norm. It 
was emphasized previously that error Ansatz models can be written with any norm because all 
norms are equivalent over finite dimensional spaces, however, the error (yh,t–y*) is not a norm. 

                                                 
11 The first implication of the proof is that convergence in the sense of a given norm ||•||1 implies convergence in the 
sense of another one ||•||2, both defined over a finite dimensional space Hh. The second implication stressed by 
equations (4-6) and (4-8) is that the convergence rate is the same with ||•||1 and ||•||2. It is emphasized that this result 
is true only for sufficiently small grid sizes, that is, to the extent where ∆h → 0. In practice different rates of solution 
accuracy may be observed depending on which norm is selected. For example it is often observed that convergence 
rates obtained with the L2 and L∞ norms are less than the L1 convergence rate for shock propagation problems. 
12 The author realizes that this discussion is somewhat incomplete and the conclusion somewhat simplistic in the 
context of non-linear hyperbolic equations. This is because weak solutions for hyperbolic systems of equations are 
not necessarily unique and weak solutions may be found that are not, like in the case of linear elliptic equations, 
equivalent to the solution of the strong formulation. Other criteria, such as those which are entropy-based, need to be 
satisfied to eliminate the non-physical weak solutions. This results in adding significant numerical dissipation or 
implementing, for example, Total Variation Diminishing (TVD) integration schemes. Although these issues are not 
taken into consideration in the discussion, consistency between the norm used to assess solution convergence and 
the norm that defines the equivalence between weak and strong solutions nevertheless seems to be necessary even 
in the case of hyperbolic equations. 
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To the best of the author’s understanding, there is no rigorous foundation for the 
derivation of the simplified error Ansatz model (4-9). It is convenient only because it is 
simple to understand and enables the derivation of a closed-form solution, as discussed in 
Section 4.4. 

One may argue that the generic error Ansatz model (4-9) is the natural choice in the case of 
numerical solvers that seek strong solutions of the laws of conservation, as opposed to the 
solutions of weak formulations. An example of such methods is the finite difference approach. 
This actually depends on the type of numerical integration scheme. Some solutions obtained 
with finite differences do not satisfy exactly the equilibrium equations or laws of conservation at 
every single degree of freedom and instant.13 There is, again, no justification for using equation 
(4-9) when this is the case. Extreme caution should therefore be exercised when using this error 
Ansatz model unless it is known a priori that it is appropriate. 

4.2 Error Ansatz Models With Known Exact Solutions 
So far it has been established that generic error Ansatz models for solution verification are 

equations that postulate that the solution error decreases monotonically as a function of the grid 
size ∆h. The convergence of numerical solutions obtained from weak formulations of the 
equations of equilibrium or laws of conservation must be studied in the sense of the Lp norm (or, 
equivalently, the energy norm) consistent with the weak formulation: 

( ) .T.O.H∆hβyye p
1Lth,

*
h p

+=−=  (4-10)
The convergence of strong solutions of the equations of motion or laws of conservation can be 
studied in a point-wise sense: 

( ) .T.O.H∆hβyye p
1th,

*
h +=−=  (4-11)

In both cases the exact solution y* of the continuous equations is assumed to be available for 
calculating the solution error eh. 

In the general case where the order of convergence is unknown, these equations feature 
two unknowns: the order of convergence p and the regression coefficient β1. Two equations are 
therefore needed to back-calculate the unknowns (p; β1). Two such equations can be obtained 
by solving the same problem using two computational grids. The first grid is meshed with “large” 
cells using a characteristic grid or element size ∆hC, and it is therefore referred to as the coarse 
grid. The coarse grid provides a numerical approximation yC. The second grid is meshed with 
“fine” cells using a characteristic grid or element size ∆hF, and it is referred to as the fine grid. 
The fine grid provides a numerical approximation yF.14 

As pointed out in Section 2, the error Ansatz models (4-10) and (4-11) assume that the grid 
size ∆h is the only variable whose discretization has any effect on the accuracy of the numerical 
approximation, or that the time step ∆t is kept constant for all numerical simulations. This 
implies that several numerical solutions must be obtained while keeping the time step constant 
and equal to the value that satisfies the most stringent of stability conditions, accuracy 
requirements, or Courant-Friedrichs-Levy (CFL) conditions. This may not be easy to achieve, 
especially in cases where implicit time integration schemes are implemented, Adaptive Mesh 

                                                 
13 An example is a mid-point finite difference scheme (such as the trapezoidal rule) where the solution yh,t at time 
(t+∆t) depends on solutions at previous time steps as well as a residual that assesses the lack of equilibrium at the 
half-point in time (t+½ ∆T). The residual vector is often non-zero, which indicates that the solution variables satisfy 
the equations of equilibrium or laws of conservation only in an “average” sense. 
14 The symbol yh,t that denotes a numerical approximation of the solution y* of the continuous equations is simplified 
into yC or yF for the coarse-grid and fine-grid solutions, respectively. 
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Refinement (AMR) methods are used, or when equations of compressible flows are solved 
(where the speed of sound and CFL condition change). 

Once the coarse-grid and fine-grid solutions have been computed, it is straightforward to 
establish that solution verification proceeds through the following steps: 

( )
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The closed-form solution is given by: 

( )CF

F

C

Rlog
e
elog

p
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=  
(4-13)

where RCF denotes the refinement ratio, always greater than one,15 and defined as: 

FCFC ∆hR∆h =  (4-14)

Note that this formalism does not prevent the analyst from using more than two grids to 
obtain a least-squares estimate of the order of convergence. This is however rarely done in 
practice due to the exponentially growing cost of subdividing an initial mesh into finer cells. 

The procedure outlined in equation (4-12) relies on the assumption that the exact solution 
y* of the continuous equations is known. It must be either evaluated analytically (preferably 
without approximation or truncation of any kind) or programmed without having to rely on 
discretization of the computational domain. Finding closed-form solutions is generally possible 
only for problems that feature a simple geometry; simple initial and boundary conditions; and 
simplified physics where non-linearity, discontinuity, and coupling of various physical effects are 
neglected. Even though such test problems are of paramount importance for code verification, it 
is also true that their relevance to weapons physics is, at best, remote. The fact that an exact 
solution may not be available for even the simplest of test problems introduces the difficulty that 
the procedure (4-12) is not directly applicable in most practical cases. 

4.3 Error Ansatz Models Without Exact Solutions 
To address the case where an exact solution is not available, the solution error is defined 

as the Lp norm of the difference between a numerical approximation and a “best estimate” ŷ of 
the exact-but-unknown solution y*: 

( ) .T.O.H∆hβyŷê p
1Lth,h p +=−=  (4-15)

The error Ansatz model (4-15) is consistent with numerical solutions obtained by solving a weak 
formulation of the laws of conservation. The norm that defines the solution error equation, 
shown to be the Lp norm for simplicity, should be equivalent to the norm used to prove the 
existence and uniqueness of the weak solution. Likewise the convergence of strong solutions of 
the equations of motion or laws of conservation can be studied in a point-wise sense with: 

( ) .T.O.H∆hβyŷê p
1th,h +=−=  (4-16)

                                                 
15 For example RCF = 2 if the size of fine-grid cells is (½)D the size of coarse-grid cells, that is, each cell is subdivided 
in two in each direction in space (D=1, 2, or 3) to create a fine mesh from a coarse mesh. 
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In both cases the exact solution of the continuous equations is unknown and must be replaced 
by an estimate ŷ to calculate the solution error êh in equations (4-15) and (4-16). 

Equations (4-15) and (4-16) state that the solution error decreases monotonically as the 
grid size is reduced (∆h → 0), the main difference compared to the solution procedure (4-12) 
being that the true error is replaced by an approximation êh. The cost to pay is the addition of an 
additional unknown, ŷ. In theory three computational grids are sufficient to estimate the three 
unknowns (p; β1; ŷ) of the coupled system of equations: 
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where the solution errors êC, êM, and êF are obtained from three numerical solutions (yC, yM, and 
yF) that solve the same system of PDE using coarse, medium, and fine grids, respectively. As 
before the notation is that these grids have characteristic cell sizes ∆hC, ∆hM, and ∆hF, and the 
influence of other discretization variables, such as the time step ∆t, is assumed insignificant or 
has somehow been removed. 

It can be observed that, besides the difficulty of obtaining multiple numerical solutions using 
finer grids, this approach is impractical whenever the solution yh,t is a field variable (yh,t ∈ ℜN or 
belongs to another N-dimensional space Ωh). Although a system of equations such as (4-17) 
could be solved through numerical optimization, it would be impossible to refine a computational 
grid (N+2) times for any realistic application. It is concluded that there exists no closed-form 
solution (p; β1; ŷ) to the error Ansatz equations (4-15) or (4-16) when the exact solution is 
an unknown field (such as y* ∈ ℜN). 

One possibility for making this problem tractable would be to extrapolate the unknown 
solution, ŷ ∈ ℜN or ŷ ∈ Ωh, from the contributions of m basis functions φk where m ≤ N: 

∑
=

=
m1...k

kkΦcŷ  (4-18)

If the extrapolated solution can be parameterized with m generalized coordinates, then solving 
for the triplet (p; β1; ŷ) only requires (m+2) independent equations because the unknowns of the 
error Ansatz model become (p; β1; c1; …; cm). Clearly, the construction of a basis {φ1; φ2; …; φm} 
is application dependent because the shape of the basis functions must be representative of the 
exact-but-unknown solution y*. A general procedure for obtaining such basis is through the 
Singular Value Decomposition (SVD) of a data matrix, Yh,t ∈ ℜN x ℜn, that collects numerical 
solutions obtained from several grid resolutions: 
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where yk(xd) denotes the value of the kth numerical solution (k = 1 … n) at the dth grid point or 
cell (d = 1 … N). From this or another orthogonal decomposition of the numerical solutions, it 
may be possible to build a regression model to calculate the coordinates ck of equation (4-18) 
as a function of grid size ∆h, then, extrapolate their values for an asymptotically converged grid 
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resolution (∆h → 0). Of course such logic relies on the assumption that the shape functions, φk, 
provide a truncated basis upon which the exact solution can be accurately estimated. 

To the best of the author’s knowledge, such approaches have not been investigated and 
they currently remain a subject of open research. In any case it is doubtful that solutions can be 
obtained analytically because the derivation of a closed-form solution depends on whether the 
orthogonality properties of the basis {φ1; φ2; …; φm} can be taken advantage of through the Lp 
norm used to define the error Ansatz model. 

4.4 Closed-form Solution Procedure Using the Richardson Extrapolation 
It is shown in Section 4.3 that there is no closed-form solution to the error Ansatz equations 

(4-15) or (4-16) in the general case where the exact solution of the continuous equations is not 
available. The only exception to this statement is the special case discussed here. When it is 
assumed that the prediction, y, is a scalar quantity and convergence is strictly monotonic, it is 
then possible to derive a closed-form solution based on the Richardson extrapolation. 

The first assumption is that the response feature, y, is a scalar quantity. Examples include 
peak values (such as peak acceleration, pressure, or temperature) and integral quantities (such 
as statistical moments, lift and draft of the flow around an airfoil, fractal dimension of a turbulent 
flow). With a scalar prediction Lp norms simplify into an absolute value and the error Ansatz 
models (4-15) and (4-16) become similar. The main equation is repeated for convenience: 

( ) .T.O.H∆hβyŷê p
1th,h +=−=  (4-20)

The second assumption is monotonic convergence from “above” or “below.” Monotonic 
convergence from above means that the numerical solutions are greater than the estimate of 
exact solution, or yh,t ≥ ŷ. Convergence from below means that the numerical solutions are 
smaller than the estimate of exact solution, or yh,t ≤ ŷ. Both cases are illustrated in Figure 4-1. 

Clearly the only significant difference between convergence from above and convergence 
from below is the sign of the absolute value of the error in equation (4-20), which translates into 
the sign of the regression coefficient β1. Without loss of generality, convergence from above is 
assumed in the remainder of this section which corresponds to a positive regression coefficient, 
β1 > 0. It can be verified that the case of convergence from below leads to the same equations 
where the sign of coefficient β1 simply needs to be switched from positive to negative. 

Having assumed monotonic convergence from above, the absolute value can be simplified. 
The error Ansatz equations corresponding to the coarse, medium, and fine grids are: 

( ) ( ) ( )p
F1F

p
M1M

p
C1C ∆hβŷy     ,∆hβŷy     ,∆hβŷy +=+=+=  (4-21)

where β1 > 0. The system of equations (4-21) must be solved for the triplet (p; β1; ŷ). It is trivial 
to obtain the solution for the order of convergence by combining the above three equations to 
eliminate the other two unknowns, β1 and ŷ. The value of the order of convergence is dictated 
by solving the non-linear equation: 

( )( ) ( )( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−=−−−+

MF

CMp
MF

p
CMMF yy

yylogR1logR1logRlogp  (4-22)

where RCM denotes the refinement ratio from the coarse grid to the medium grid and RMF is the 
refinement ratio from the medium grid to the fine grid. By definition the refinement ratios RCM 
and RMF are always greater than one, and related to the cell sizes through the formulae: 

FMFCMCFMFMMCMC ∆hRR∆h          ,∆hR∆h          ,∆hR∆h ===  (4-23)
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There exists no closed-form solution to the non-linear equation (4-22) when the refinement 
ratios RCM and RMF are different, and the value of p that satisfies the equation must be obtained 
through numerical optimization. However the equation further simplifies when the refinement 
ratios are equal, RCM = RMF, and it yields the well-known solution: 

( )Rlog
yy
yylog

p MF

CM
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=  (4-24)

where R denotes the common refinement ratio defined as: 

F

M

M

C

∆h
∆h

∆h
∆hR ==  (4-25)

 

 
(a) Monotonic convergence “from above.” 

 
(b) Monotonic convergence “from below.” 

Figure 4-1. Illustration of monotonic solution convergence as a function ∆h. 

It is emphasized that the closed-form solution (4-24) for the order of convergence is based 
on three strong assumptions: 1) The prediction y is a scalar quantity; 2) Convergence is 
strictly monotonic, either from above or below; and 3) The grid refinement ratio is 
constant as defined by equation (4-25). Clearly the third assumption of constant refinement 
ratio can be relaxed. The price to pay is that the order of convergence must then be computed 
from equation (4-22) using a numerical optimization solver. The second assumption of strictly 
monotonic convergence can also be relaxed, although this has never been discussed in the 
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literature to the best of the author’s knowledge. Section 4.6 presents a procedure to calculate 
the triplet (p; β1; ŷ) based on equation (4-20) when the sign of the absolute value is unknown. 

The strongest of the aforementioned three assumptions is clearly the first one. Although this 
is never discussed in the literature, it is contended that restricting solution convergence to scalar 
quantities so that simplified models such as yh,t = ŷ + β1(∆h)p can be studied is problematic. If an 
integral quantity is extracted from a field solution, then studying convergence based on a 
simplified error Ansatz model may be appropriate because an integral quantity “averages” the 
solution. Even though such averaging may not be equivalent to the Lp or energy norms of the 
weak formulation, it nevertheless implies that convergence is studied in an average sense and 
this is consistent with the logic of discretizing a weak formulation. On the other hand using a 
simplified error Ansatz model to assess convergence of a scalar quantity (such as a peak value) 
is not rigorous because the solution field converges in the sense of the Lp or energy norms while 
the error Ansatz equation yh,t = ŷ + β1(∆h)p studies convergence in a strong sense.16 

Proceeding with the solution procedure, the extrapolation ŷ is obtained as: 

1R
yyyŷ p

MF
F −

−+=  (4-26)

where the order of convergence is either the theoretical value or the estimation (4-24). Solution 
(4-26) is the Richardson extrapolation that best estimates the exact-but-unknown solution of the 
continuous equations. The solution shown in equation (4-26) is obtained from the medium and 
fine grids. It can be easily verified that using any combination of two grid solutions provides the 
same value for ŷ: 
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because the four estimates are not independent, they are related through equation (4-24). The 
regression coefficient β1 can be back-calculated from any one of the following equations:  
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Equations (4-24), (4-26), and (4-28) calculate the triplet (p; β1; ŷ) assuming that the prediction is 
a scalar quantity, convergence is strictly monotonic, and the grid refinement ratio is constant. 

4.5 The Grid Convergence Index 
The Grid Convergence Index (GCI) was proposed by Patrick Roache in 1994 as a way to 

report the results of grid convergence studies in Computational Fluid Dynamics [21]. The GCI 
indicates convergence based on an error estimator derived from the Richardson extrapolation. 

                                                 
16 An example is the calculation of the coefficients of lift CL and drag CD of an airfoil: they are integral quantities 
derived from the pressure field generated by a flow around an airfoil. In the case where a weak solution of the 
pressure field is obtained, assessing convergence of a scalar quantity such as the peak pressure with the error model 
yh,t = ŷ + β1(∆h)p is inconsistent with the fact that the pressure field satisfies the laws of conservation, and therefore 
converges, only in the sense of the Lp norm (or equivalent energy norm). Studying, on the other hand, the 
convergence of CL and CD based on the scalar equation may be appropriate because CL and CD provide an average 
of the pressure field. 
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The main advantage of the CGI is to provide an objective metric that uniformly reports the 
results of solution convergence no matter which order of accuracy and refinement strategy are 
used. In other words, the GCI value obtained from analyzing a 1st order method with grid 
“doubling” or “halving” can be directly compared to the GCI value obtained from analyzing a 2nd 
order method with non-constant mesh refinement. 

The starting point of the GCI is an estimation of the exact-but-unknown solution ŷ provided 
through Richardson extrapolation, and re-written to explicitly show the error terms: 
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yyε     and     

1R
εe

e1yŷ
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 (4-29)

where R denotes the grid refinement ratio and yC and yF are two numerical solutions obtained 
from calculations performed on coarse and fine grids, respectively. It is emphasized that 
equations (4-29) are based on two grids. This means that the order of convergence is known 
(and equal to the theoretical value or estimated independently from three computational grids) 
or the exact solution of the continuous equations is available (in which case ŷ = y*). 

The error (ε) defined in equation (4-29) is not the correct error estimator because it does not 
take into account the grid refinement ratio nor does it account for the order of convergence. The 
scaled error (e), on the other hand, takes the refinement ratio and order of convergence into 
account and forms the basis for the derivation of the GCI: 
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where FS is a safety factor whose value depends on the application, characteristics of the code 
used, and smoothness of the solution. Values FS = 1, FS =1.25, or FS = 3 have been proposed 
for various applications in Computational Fluid Dynamics and Solid Mechanics. Small values of 
the GCI, typically less than a few percents, provide strong evidence that the numerical solutions 
have converged to the exact-but-unknown solution y*, and that the Richardson extrapolation ŷ is 
an accurate estimation of y*. 

One can understand that the GCI yields a uniform metric for comparing mesh convergence 
studies by noting that, for grid doubling or halving (R = 2) and 2nd order accuracy (p = 2), the 
denominator is (Rp – 1) = 3. By selecting a safety factor FS = 3, the definition (4-30) reduces to 
GCI = |ε|. In cases where grid refinement is other than doubling (R ≠ 2) or accuracy is other than 
quadratic (p ≠ 2), the factor FS/(Rp – 1) effectively scales the error term |ε| to provide a metric 
value that is comparable to one that would be obtained in the case of (R = 2; p = 2). It means 
that convergence studies can be compared and reported uniformly even when they are not 
conducted with grid doubling and 2nd order accurate methods. 

As mentioned previously the derivation of the GCI in equations (4-29) and (4-30) is based 
on two computational grids which assumes that either the order of convergence is known or the 
exact solution of the continuous equations is available. The derivation can be generalized to 
calculate the GCI based on three grids in the case where the order of convergence and exact 
solution are unknown: 
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Symbols GCIF and GCIC denote values obtained from the fine-grid and coarse-grid solutions, 
respectively. Besides offering a generalization of the GCI to multiple grids, the key significance 
of definitions (4-31) is to provide a practical assessment of asymptotic convergence. It can be 
verified easily that asymptotic convergence has been achieved, that is, the numerical solutions 
yC, yM, yF, and the extrapolation ŷ are “close enough” to the exact-but-unknown solution y*, if: 

( ) Constant      
∆hF

GCI
p

s

≈  (4-32)

which yields: 
p

F

C R
GCI
GCI ≈  (4-33)

The procedure outlined in equations (4-31) to (4-33) generalizes easily to multiple, that is, more 
than three, grids. 

The attractiveness of the GCI resides in the fact that the safety factor (FS) can be adjusted 
depending on the problem analyzed. It is shown above that the value FS = 3 reduces the CGI to 
the relative error of two numerical solutions for grid doubling and 2nd order convergence. The 
common belief is also that the value FS = 3 leads to a conservative estimate of the total 
numerical error that includes mesh/grid/zoning discretization error, Taylor series expansion error 
(if applicable), numerical integration error, and round-off. Although recommended by a large 
number of practitioners, there is no formal proof that the value FS = 3 can be trusted to yield a 
conservative estimate of the numerical error. 

More disturbing is the attempt to relate the error metric, |e| of definition (4-29) or |eF| in 
equations (4-31), to the concept of confidence interval. For example Patrick Roache writes: 

“The error estimator eF itself does not provide a very good confidence interval. 
One might expect that it is equally probable that eF be optimistic as conservative, 
i.e. it is just as likely that the actual error be greater than eF as less than eF. This 
would correspond roughly to a 50% confidence bound.” (From Reference [22].) 

Although the first sentence above stops short of saying that eF defines a confidence interval, it 
engages on the slippery slope of suggesting a connection between the two. Unfortunately other 
authors do not exercise the same level of restraint and the belief that “a fine-grid GCI computed 
with a factor of safety FS = 3 defines a 95% confidence interval of the exact solution” is often 
heard in oral presentations and read in technical publications. The idea that the error eF and 
the GCI define a confidence interval of grid convergence uncertainty at the 95% or any 
other confidence level is simply wrong. Two arguments are presented in defense of this 
opinion. First, confidence intervals make sense only in the context of statistical distributions. To 
the best of the author’s understanding, there is no connection between the GCI derived in 
equations (4-29) to (4-31) and a hypothetical distribution of the solution error. 

Second, the common belief alluded to in the above quotation that a 50% confidence interval 
[yMin; yMax] is the interval in which there is a 50% chance of finding the true-but-unknown value of 
the solution y* is simply wrong. The concept of confidence interval applies only to a population 
statistic such as a mean µY. The notation P(yMin ≤ µY ≤ yMax) = 95%, for example, defines the 
interval [yMin; yMax] as the 95% confidence interval of the statistic µY. This does not mean that 
there is a 95% chance that the true-but-unknown population mean is between yMin and yMax. It 
means instead: 

“If a hundred samples of N data points were taken and the 95% confidence 
intervals were calculated for each sample, then 95 of these intervals would 
intersect the true population mean while 5 intervals would not contain the true 
population mean.” (From References [10] and [4].) 
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Likewise the belief according to which “using FS = 3 in the definition of the GCI provides 2-σ 
uncertainty bounds” is often encountered. The terminology 2-σ refers to twice the standard 
deviation (σ) of the distribution of grid convergence uncertainty which, roughly, corresponds to 
the 95% probability level of a Gaussian distribution. It is undeniable that defining 2-σ bounds 
would be convenient to bound the exact-but-unknown solution y* relative to the estimates yC, yM, 
yF, and extrapolation ŷ. Patrick Roaches, for example, discusses a 2-σ uncertainty band when 
analyzing a population of 30 solutions for the 1D Burgers equation solved with different 
combinations of grid refinement ratios, orders of accuracy, Reynolds numbers, etc. These 2-σ 
bounds are legitimate because they apply to a population of solutions [22]. Unfortunately many 
practitioners may have understood this to mean that “FS = 3 provides 2-σ uncertainty bounds” 
which implies that the convergence uncertainty is such that |y* – yF| is distributed according to a 
population whose mean statistic is zero and standard deviation statistic is 2σ = GCIF. The idea 
that the GCI defines 2-σ uncertainty bounds is wrong. A statistically correct statement made 
about a population of problems has no justification when reduced to a single problem. 

4.6 Closed-form Solution For Non-monotonic Convergence 
In equations (4-24), (4-26), and (4-28), a closed-form solution is derived for the triplet of 

unknowns (p; β1; ŷ) from the knowledge of three numerical solutions yC, yM, yF. The procedure is 
made possible only because scalar quantities are analyzed, convergence is monotonic, and the 
grid convergence ratio is constant. This section discusses a procedure to obtain (p; β1; ŷ) based 
on equation (4-20) when the assumption of monotonic convergence is relaxed. Like before a 
closed form solution is possible only in the case of constant grid refinement. If the coarse-to-
medium refinement is different from the medium-to-fine refinement, a solution is still possible 
although numerical solvers (such as a Newton-Raphson search) must be implemented to solve 
the non-linear equation. 

The three equations needed to solve for the triplet (p; β1; ŷ) are given by: 
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 (4-34)

where p denotes the order of convergence (p = 2, for example, for second-order accuracy), ŷ is 
the Richardson extrapolation of the exact-but-unknown solution y* of the continuous equations, 
and β1 is a regression coefficient. Assuming monotonic convergence simplifies equations (4-34) 
where absolute values disappear and the sign of coefficient β1 is constant, either β1 > 0 for a 
convergence from above or β1 < 0 for a convergence from below (see Figure 4-1). 

Keeping the absolute values in the system of equations (4-20) recognizes that convergence 
may not be strictly monotonic. Figure 4-2 illustrates a non-monotonic convergence where the 
solution error changes its sign but consistently decreases as a function of grid size ∆h. Even 
though the absolute value is not differentiable at the origin, solving the system of equations to 
calculate (p; β1; ŷ) is tractable using a numerical optimization solver and three equations only. 
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Figure 4-2. Illustration of non-monotonic solution convergence as a function ∆h. 

A solution procedure is proposed here that leads to a closed-form solution. To remove the 
absolute values from the system of equations (4-34), the signs sC, sM, and sF of each difference 
are written explicitly: 
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where the regression coefficient β1 is, now, positive only. The two systems of equations (4-34) 
and (4-35) are equivalent in terms of information content only if the signs sC, sM, and sF are 
unknown. Since each sign is either positive or negative, the total number of combinations of the 
triplet (sC; sM; sF) is equal to (2)3 = 8. The eight cases are listed in Table 4-1. 

If the error Ansatz model (4-20) with non-monotonic convergence is the correct assumption, 
then at least one of the hypotheses listed in Table 4-1 must be verified. A brute-force approach 
to solve for the triplet (p; β1; ŷ) consists of solving the system of equations (4-35) for each 
combination of signs (sC; sM; sF) listed in Table 4-1 and examining which solutions make sense. 

Table 4-1. Listing of the eight possible cases for the triplet of signs (sC; sM; sF). 

Possible Cases Signs of Absolute Errors Hypothesis 
Solution yC Solution yM Solution yF Sign sC Sign sM Sign sF 

(H1) ŷ ≥ yC ŷ ≥ yM ŷ ≥ yF -1 -1 -1 
(H2) ŷ ≥ yC ŷ ≥ yM ŷ ≤ yF -1 -1 +1 
(H3) ŷ ≥ yC ŷ ≤ yM ŷ ≥ yF -1 +1 -1 
(H4) ŷ ≥ yC ŷ ≤ yM ŷ ≤ yF -1 +1 +1 

(H5) = -(H4) ŷ ≤ yC ŷ ≥ yM ŷ ≥ yF +1 -1 -1 
(H6) = -(H3) ŷ ≤ yC ŷ ≥ yM ŷ ≤ yF +1 -1 +1 
(H7) = -(H2) ŷ ≤ yC ŷ ≤ yM ŷ ≥ yF +1 +1 -1 
(H8) = -(H1) ŷ ≤ yC ŷ ≤ yM ŷ ≤ yF +1 +1 +1 
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A remark is that cases labeled (H5) to (H8) are “opposite” from cases labeled (H1) to (H4) in 
the sense that they feature combinations of signs that are switched. This symmetry is denoted 
symbolically as “(H4+k) = -(H5-k)” in Table 4-1 with k = 1, 2, 3, 4. It means that solutions for cases 
(H5) to (H8) can be obtained through simple modifications of solutions (H1) to (H4), hence, giving 
four independent cases only. The number of independent cases actually reduces to three since 
hypothesis (H1) and its opposite (H8) correspond to the case of monotonic convergence and can 
be eliminated from the present analysis. The remainder of the discussion is focused on cases 
(H2), (H3), and (H4) where one sign is different from the other two. The derivations below are 
nevertheless valid for the eight cases of Table 4-1. 

The solution procedure is as follows. Combining the coarse and medium equations (4-35) 
to eliminate the unknown Richardson extrapolation leads to an expression for the regression 
coefficient β1 as a function of the order of convergence p: 

( ) ( )p
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1 ∆hs∆hs
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−=  (4-36)

The same derivation is applied to the coarse and fine solutions: 
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and the medium and fine solutions: 
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Any two of equations (4-36), (4-37), (4-38) can be combined to calculate the value of the order 
of convergence that leads to a unique solution for β1. Combining, for example, the second and 
third leads to: 
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which can be expressed in terms of the refinement ratios RCM and RMF of definition (4-23): 
( )( ) ( )( ) ( ) 0yysRyysRRyys CMF

p
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p
MFCMMFC =−+−+−  (4-40)

For any combination of signs (sC; sM; sF) from Table 4-1, the non-linear equation (4-40) can 
be solved for the order of convergence using, for example, a Newton-Raphson search. Uniform 
refinement across the three grids, that is, RCM = RMF = R, provides a further simplification into: 
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Equation (4-41) is made quadratic through the change of variable X = (R)p, which leads to the 
solution procedure outlined below: 
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Solution for the quadratic equation can be written analytically as follows: 
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 (4-43)

It is straightforward to calculate X+, X– and the corresponding orders of convergence for 
various combinations of signs in Table 4-1. Incoherent solutions, such as ∆ < 0, X+ < 0, X– < 0, 
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indicate that the corresponding hypotheses are not supported by the data yC, yM, and yF. If the 
assumption of non-monotonic error Ansatz model (4-20) is appropriate, then there should be a 
single combination of signs (sC; sM; sF) that leads to a coherent solution for (p; β1; ŷ). 

 
(a) Data yC, yM, yF and extrapolation ŷ that correspond to hypothesis (H4). 

 
(b) Data yC, yM, yF and extrapolation ŷ that correspond to hypothesis (H3). 

Figure 4-3. Illustration of the ambiguity of non-monotonic solution convergence. 

The reader is nevertheless cautioned that ambiguity may exist. This is shown in Figure 4-3 
that illustrates three data points yC, yM, yF and the corresponding extrapolation ŷ. The upper 
Figure 4-3(a) shows an acceptable solution for (p; β1; ŷ) that corresponds to hypothesis (H4): the 
absolute distance between numerical solutions and the extrapolation decreases with ∆h and the 
signs are (sC; sM; sF) = (-1: +1; +1). The lower Figure 4-3(b) shows another acceptable solution 
for (p; β1; ŷ) that corresponds to hypothesis (H3): the absolute distance also decreases with ∆h 
while the signs are (sC; sM; sF) = (-1: +1; -1). Should such situation occur, additional criteria 
would have to be relied upon to decide which solution needs to be selected. 

The derivations presented in Section 4.6 extend the monotonic error Ansatz model applied 
to scalar predictions, yh,t = ŷ + β1(∆h)p, to the case of non-monotonic convergence. Closed-form 
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solutions are obtained in the special case of uniform grid refinement. The procedure applies to 
the 2-grid case, where only two grid resolutions are needed because the exact solution is 
known, and the N-grid case, N ≥ 3. The only difficulty resides in the growth of the number of 
equations (4-40) that must be solved, that grows as (2)N. To the best of the author’s knowledge, 
no other generalization of the error Ansatz model yh,t = ŷ + β1(∆h)p is possible that would yield 
closed-form solutions. 

The derivations presented in Section 4.6 extend the monotonic error Ansatz model applied 
to scalar predictions, yh,t = ŷ + β1(∆h)p, to the case of non-monotonic convergence. Closed-form 
solutions are obtained in the special case of uniform grid refinement. The procedure applies to 
the 2-grid case, where only two grid resolutions are needed because the exact solution is 
known, and the N-grid case, N ≥ 3. The only difficulty resides in the growth of the number of 
equations (4-40) that must be solved, that grows as (2)N. To the best of the author’s knowledge, 
no other generalization of the error Ansatz model yh,t = ŷ + β1(∆h)p is possible that would yield 
closed-form solutions. 

4.7 Summary of Assumptions Made 
As much as it is to introduce the neophyte to the main equations and procedures of code 

and solution verification, the purpose of this section is also to unravel the assumptions upon 
which it is based. The most important assumptions and misconceptions encountered are 
summarized below: 

• Section 4.1: Verification activities can be categorized into code verification or solution 
verification. The main objective of the former is to provide assurance that the PDE are 
implemented, discretized, and solved correctly by comparing one or several numerical 
approximations to the exact solution of the continuous equations. Rigorous code 
verification therefore relies on the knowledge of the exact solution. The main objective of 
solution verification and self-convergence study is to verify that the rate of convergence 
observed by obtaining numerical solutions from several grid refinements matches the 
theoretical convergence rate of the numerical method. 

• Section 4.1: The ultimate objective of solution verification is to estimate the numerical 
error of the discretized solution obtained from a given grid, relative to the exact solution 
of the continuous PDE. Pre-requisites to do so are that: 1) the code has been verified; 2) 
the actual order of convergence has been estimated; and 3) an appropriate error Ansatz 
model has been developed. 

• Section 4.1: The most commonly encountered error anzatz model takes the form of an 
equation such as yh,t = ŷ + β1(∆h)p where ŷ represents an estimate of the exact solution 
of the continuous equations. (Use ŷ = y* if the exact solution is known.) Although it is 
simple, intuitive, and allows for closed-form derivations, there is no rigorous foundation 
for this simplified error Ansatz model. 

• Section 4.1: A general-purpose error Ansatz model is eh = β1(∆h)p where eh = ||ŷ – yh,t|| 
denotes a norm of the difference between the numerical solution (yh,t) and the reference 
solution (ŷ). Choosing the absolute value, eh = |ŷ – yh,t|, is justified when the numerical 
method implemented discretizes a strong formulation of the equations, that is, the 
equations are enforced point-wise in the computational domain. 

• Section 4.1: When a weak formulation of the PDE is discretized, the norm that defines 
the solution error is often the Lp norm. (Common choices are p = 1, 2, or ∞.) Because all 
norms defined over a finite dimensional space are equivalent, the choice of norm is not 
critical. It is argued, however, that the only choice consistent with the logic of searching 
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for a weak solution that is equivalent to the strong solution of the PDE is the so-called 
energy norm of the weak formulation. 

• Section 4.2: The general-purpose error Ansatz model eh = β1(∆h)p and the simplified 
version yh,t = ŷ + β1(∆h)p both assume that the coupling between grid spacing ∆h and 
time stepping ∆t can be ignored, either because there is none or because ∆t is kept 
constant during all simulations. In the latter case, ∆t need to satisfy the most stringent 
CFL, stability, or accuracy condition, which usually means using a value determined by 
the characteristics of the finest mesh. 

• Sections 4.2 and 4.3: It is necessary that the exact solution y* be known explicitly to 
obtain a closed-form solution for the unknowns (p; β1) of the error Ansatz eh = β1(∆h)p, 
no matter how the error eh is defined. This applies whether the solutions are scalars or 
field variables (y*, yh,t ∈ ℜN, for any N ≥ 1). No closed-form solution exists when the 
numerical solutions are field variables and the corresponding exact solution is unknown. 

• Section 4.4: A closed-form solution can be found for the triplet of unknowns (p; β1; ŷ) of 
the simplified error Ansatz model yh,t = ŷ + β1(∆h)p where the exact solution is unknown 
and, therefore, replaced by an estimate ŷ. The error Ansatz model and its solution rely 
on three assumptions: 1) the solutions ŷ and yh,t are scalar quantities; 2) convergence is 
strictly monotonic; and 3) the grid refinement ratio is constant. The third assumption can 
be relaxed at the cost of having to solve a non-linear optimization problem for the order 
of convergence. The second assumption can be relaxed and a semi-analytical solution 
procedure is derived in Section 4.6 to calculate (ŷ; p; β1). 

• Section 4.5: The grid convergence index is a standardized metric to report the results of 
solution verification and self-convergence studies. Small values of the GCI indicate a 
small error between the numerical and reference solutions. Constant values of the ratio 
GCI/(∆h)p obtained from several grids indicate asymptotic convergence. However the 
idea that the GCI defines a confidence interval of grid convergence uncertainty is simply 
wrong, no matter which value of the safety factor is used. The idea that the GCI defines 
2-σ uncertainty bounds is also wrong. 
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5. Approach Proposed to Develop Non-linear Error Ansatz Models 

Summary: Solution convergence is generally analyzed by postulating an 
error model that describes how the solution error behaves in space and, 
possibly, in time. Model parameters such as the regression coefficient β1 
and exponent p of an effect such as β1(∆h)p are calibrated to improve the 
goodness-of-fit of the error Ansatz equation. Model calibration can be 
performed in a least-squares sense or using a non-linear optimization 
solver. The approach proposed here for model fitting combines the 
statistical concepts of effect screening and Bayesian model fitting. Prior 
probabilities are defined for each effect, such as β1(∆h)p or β2(∆t)q, 
potentially included in the model. Models are formulated by randomly 
selecting effects according to the prior probabilities. Models visited are 
evaluated with a goodness-of-fit metric that assesses their ability to 
match the observed solution errors. The goodness-of-fit metric is treated 
as a likelihood function and, according to the Bayesian rule of 
probability, it is combined to prior probabilities to produce a posterior 
probability for each effect. The search algorithm implements a simple 
version of the Markov Chain Monte Carlo sampling that takes a random 
walk through all potential models. A consequence of Bayesian updating 
is that the more significant effects tend to be included more often which, 
in turn, improves the model goodness-of-fit. This procedure combines 
effect screening to model fitting, which is a step towards questioning the 
functional form of a model as well as fitting its parameters. 

Section 5 describes the approach proposed to study the adequacy of formulating solution 
convergence error with a family of polynomial models parameterized by regression coefficients 
(βo;β1;β2;β3) and exponents (p;q;r;s): 

( ) ( ) ( ) ( ) .T.O.H∆t∆hβ∆tβ∆hββyye sr
3

q
2

p
1oLth,

*
h p

++++=−=  (5-1)
At a high level, this problem is simply one of calibration (also known as “model fitting”) where 
parameters of the model are optimized to make the predictions of equation (5-1) match 
observations with greater fidelity-to-data. The approach proposed, however, takes a small step 
towards calibrating, not only the model parameters (βo;β1;β2;β3;p;q;r;s), but also the functional 
form of the model itself. This is accomplished through the concept of statistical effect screening. 

After briefly defining the main concepts in Section 5.1, the conventional approach to model 
fitting is overviewed for completeness in Section 5.2. Section 5.3 guides the reader though the 
main steps of Bayesian effect screening and model fitting [15]. Section 5.4 presents an 
application of the algorithm. Details about the procedure can be obtained from Reference [15]. 

5.1 Model Fitting and the Notion of Effect 
 Model fitting generally refers to the calibration of model parameters, labelled as β, given a 
sequence of data points {xd;yd}, d = 1 … NData, where NData denotes the number of observations. 
“Observation” here refers to an evaluation of the code that provides a numerical solution to be 
compared with the exact solution of the continuous equations. For the purpose of keeping the 
discussion simple, the model that builds an input-output relationship between inputs x and 
outputs y is treated as a black-box and denoted as: 
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( )βx;My =  (5-2)
According to the “conventional” paradigm for model fitting, uncertainty about the knowledge of 
such input-output relationship is associated with model parameters β and the functional form of 
the model is generally not questioned. Note, however, that some of the model parameters can 
be defined in such a way that they modify the functional form of equation (5-2). 

Another notion that must be clarified before proceeding is the notion of “effect”. Broadly 
speaking, an effect is a term whose contribution to the model can be isolated and separated 
from the contribution of other effects. For example, a model that depends on three main effects, 
symbolically labelled “A”, “B”, and “C” for simplicity, is written as:  

CβBβAβy 321 ++=  (5-3)
where the individual terms A, B, and C are either constants or functions of the inputs x. Main 
effects such as A and B may be combined into what is commonly called a linear interaction such 
as AB. Higher-order interactions would typically assume functional forms such as A2B or A2B2. 

Consider the two-input, one-output non-linear model: 
( ) )sin(xx0.7e1.5)sin(x2.0x0.3y 2

2
1

xx
21

21 +−+= −  (5-4)
This equation depends on two inputs (x1;x2), and it is obtained as the combination of four 
separate effects. The effects are defined through three functions A, B, and C that depend on the 
pair (x1;x2): 

21xx
21 eC     , )sin(xB     , xA −===  (5-5)

Using the definitions (5-5), it can be verified easily that equation (5-4) is equivalent to: 
BA0.7C1.5B2.0A0.3y 2+−+=  (5-6)

The model is written above as the combination of three main effects, A, B, and C, and a non-
linear interaction, A2B. Effects are arbitrary functions that can assume any form (linear or non-
linear, polynomial or not, etc.) of the inputs x. Note that, even though equation (5-6) “looks like a 
polynomial function”, it is nevertheless a non-linear function of the original inputs (x1;x2). 

In the remainder of Section 5, black-box models are written as a combination of effects: 
βXXβy T

N1...k
kk

Effects

== ∑
=

 
(5-7)

where Xk denotes a particular effect; NEffects is the total number of effects included in the model; 
and X and β are matrix-like notations for the effects and corresponding regression coefficients. 
Applied to equation (5-6), for example, the length-four vectors X and β are X = {A; B; C; A2B} 
and β = {0.3; 2.0; -1.5; 0.7}. The polynomial-like appearance of equation (5-7) should not mask 
the fact that it actually applies to a wide range of models, and not just polynomials. 

It is also emphasized that, while the input variables x may be independent, the effects Xk 
are neither independent nor uncorrelated. The Bayesian model screening discussed below does 
not require effects to be independent or uncorrelated. 

What is most interesting about effects is to study their influence on predictions of the model. 
Omitting a significant effect would result in modifying significantly the prediction, while omitting a 
non-significant effect would not change the prediction by much. The connection between model 
fitting and effects is that, in order for the model to reproduce the available observations with 
fidelity, all significant effects must be included in the functional form of the model. Effect 
screening refers to the identification of the most significant effects given a design of experiments 
that prescribes the values of inputs and corresponding observations {xd;yd} for d = 1 … NData. 
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5.2 Conventional Approach to Model Fitting 
 Equation (5-7) introduces the general form of a model that can be written as y = XTβ after 
decomposition according to NEffects effects. According to this representation, the functions Xk are 
evaluated from the values of inputs x, and parameters βk are constant. As previously mentioned, 
uncertainty about the model is assumed to be associated to uncertainty about the value of β. 

 Parameter calibration consists of estimating the value of parameters β such that predictions 
of the model (5-2) or, equivalently, (5-7) reproduce the available observations {xd;yd} with 
fidelity. A commonly encountered practice to best-fit the parameters is to define an objective 
function, C, that represents the prediction error, and to minimize it using an optimization solver. 
One of the most straightforward choices of cost function is the Euclidean (L2) norm of the 
prediction error: 

( ) ( ) eeβXyβXyC T

N1...d

T(d)
d

TT(d)
d

2

Data

=−−= ∑
=

 
(5-8)

where X(d) denotes the effect matrix evaluated at the dth observation or data point xd; and e is a 
vector of length NData that stores the prediction error, that is, ed = (yd – X(d)Tβ). The Best, Linear, 
and Unbiased Estimator (BLUE) of parameters β is provided by the solution: 

yXX)(Xβ̂ T1T −=  (5-9)
where the column vector y collects NData observations, and the NData rows-by-NEffects columns 
matrix X evaluates the NEffects effects for each of the NData observations: 
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 Clearly, other objective functions would yield different estimators. The generalization of the 
objective function (5-8) is commonly referred to as the Generalized Least-Squares (GLS) 
estimator [26]. Weighting matrices are introduced and a regularization term penalizes solutions 
too distant from the user-defined starting value β(0) of parameters β. Equations (5-11) and (5-12) 
show the GLS objective function and the corresponding GLS estimator, respectively: 

( ) ( )(0)1
bb

T(0)1
ee

T2 ββWββλeWeC −−+= −−  (5-11)

( ) yWXλWXWXβ̂ 1
ee

T11
bb

1
ee

T −−−− +=  (5-12)
where λ denotes a user-defined regularization parameter. 

 In general, the weighting matrices Wee and Wbb are chosen arbitrarily or based on 
experience, for example, to weight the importance of some observations or parameters more 
than others. When covariance matrices are used, normal distributions are assumed to describe 
the uncertainty, and λ = 1, the GLS estimator of equation (5-12) can be interpreted as a 
Bayesian estimator. Rigorously speaking, other factors should appear in the definition of the 
Bayesian objective function. Because these additional factors are constant, however, the same 
estimator as the one shown in equation (5-12) is obtained. An important benefit of Bayesian 
inference is that it provides a posterior estimate of the covariance matrix: 

( ) 11
ee

T1
bb

)(posterior
bb XWXWŴ −−− +=  (5-13)

 Correlation coefficients of the posterior covariance matrix (5-13) provide insight into the 
quality of the estimator. One generally concludes that the functional form of the model is 
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inappropriate when significant posterior correlation values are obtained between parameters 
that have no physical reason to be correlated [9]. With the exception of investigating the 
posterior correlation, however, no practical tool is available to select the appropriate form of a 
non-linear model, which is the process we refer to a model screening. Model form such as, for 
example, replacing a linear term by a cubic effect, is usually selected based on experience or 
empirical observation. Sometimes, several choices seem equally likely and the analyst has to 
go through the painstaking process of fitting each model and assessing their goodness-of-fit. 
Because it is based on the concept of goodness-of-fit, such approach can lead to over-fitting. 

 Another subtle but important issue is to estimate the posterior probability of a particular 
model as opposed to simply relying on the goodness-of-fit. By definition, the posterior probability 
is conditioned on the evidence available, that is, the observations or data points. Posterior 
probability and goodness-of-fit complement each other because the former indicates if the 
analyst’s prior opinion of the form of the model is consistent with the evidence. In Section 5.3, a 
tool is proposed for model screening based on the concept of posterior probability. 

5.3 Bayesian Effect Screening and Model Fitting 
 In the previous section, the state-of-the-practice in model fitting is briefly overviewed. A 
polynomial-like decomposition in effects is considered for simplicity. It is emphasized that this 
formalism does not imply that the Bayesian model screening technique summarized here is 
restricted to polynomials. Each effect of the decomposition can be an arbitrarily complex and 
non-linear function of the input variables x. Essentially, the only two assumptions made are as 
follows. First, a model y = M(x;β) must be defined. Second, an inference algorithm is available 
for calibrating the parameters β. The inference is usually referred to as “best-fitting” when 
applied to polynomials, or “training” when applied to neural networks. In this study, the 
calibration of model parameters is handled through a least-squares solver when the model can 
be decomposed according to equation (5-7) or a non-linear optimization solver when it cannot. 

Model screening consists in identifying the most probable models based on a family of 
models defined by the user and given observations that the model must reproduce with the 
highest possible degree of fidelity. It is emphasized that model screening does not necessarily 
identify the best model but rather ranks all potential contributing effects according to their 
posterior probability of occurrence. 

The procedure starts by, first, defining a family of models. This is achieved by defining 
various effects Xk and how these effects are allowed to interact to form the population of 
potential models. Figure 5-1 illustrates the concept of a family of models by showing the three 
effects, X1 = (∆h)p, X2 = (∆t)q, and X3 = (∆h)r(∆t)s, in the case of solution verification where the 
model is a function of space and time discretization variables ∆h and ∆t. The model-forming rule 
illustrated in Figure 5-1 is that the three effects are allowed to be combined in proportions 
defined by the regression parameters β1, β2, and β3. Each model visited is evaluated by 
calculating its goodness-of-fit to the observations. Equations (5-8) and (5-11) are examples of 
fidelity metrics used in Sections 6 and 7. This is illustrated in Figure 5-1 with dots whose colors 
indicate the degree of fidelity-to-data. The likelihood that a particular model is appropriate to 
represent the data is indicated by its value of the goodness-of-fit metric. It is this notion of 
likelihood that is employed to guide the search for the most appropriate model(s) and, hence, 
the identification of the most significant effects to be included in the model(s). 
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Figure 5-1. Definition of a family of models with effects (∆h)p, (∆t)q, and (∆h)r(∆t)s. 

 The second step of the procedure is to assign the prior probability of occurrence for each 
effect Xk. The priors can reflect empirical observations, experience or the analyst’s knowledge of 
the phenomenon investigated. In the application discussed in Sections 6 and 7, for example, no 
specific knowledge can be used to guide a pertinent choice of priors. Probabilities of occurrence 
are therefore set to a uniform 25% level for all main effects. 

The third step is to let the Bayesian screening method find the most appropriate models by 
searching through all possible combinations of effects. The most probable models are those that 
best reproduce the data. Fidelity-to-data can be assessed using the Root Mean Square (RMS) 
error between observations and predictions, which is equivalent to equation (5-8). Assuming 
Gaussian distributions, the RMS error becomes proportional to the likelihood function L(y|β) that 
estimates the appropriateness of the model given the knowledge of parameters β. Other 
functions can be used to define the likelihood, such as the Bayesian objective function (5-11) 
and many other functions commonly used in test-analysis correlation and model calibration [18]. 

Once the likelihood of a particular model has been estimated, the posterior probabilities of 
its effects can be updated according to the Bayes Theorem that states that PDF(β|y), the 
posterior Probability Density Function (PDF), is equal to the likelihood function L(y|β) multiplied 
by the prior probability PDF(β) and divided by the probability PDF(y) of the data: 

PDF(y)
β)PDF(β)|L(yy)|PDF(β =  (5-14)

The probability PDF(y) of observations is generally kept constant and omitted in equation 
(5-14). A simple re-normalization suffices to correctly scale the probability distribution. Because 

Main Effect (∆h)p

Main Effect (∆t)q 

Interaction (∆h)r(∆t)s 

p = 1 

p = 2

q = 1 

q = 2

(r;s) = (1;1) 

(r;s) = (½;½) 

Goodness-of-fit 
 

  
  

Good 
 
 
Poor 

( ) ( )
( )( )∆t∆hβ

∆tβ∆hββe

3

2
2

2
1oh

+
++=

( ) ( )2
2

2
1oh ∆tβ∆hββe ++=



FY05 ASC V&V Code Verification Project                                                        Non-linear Error Ansatz Models for Solution Verification 
 

 
Approved for unlimited public release on October 26, 2005                                                                     LA-UR-05-8228, Unclassified 

50

the procedure is iterative in nature, the Bayes update (5-14) is repeated and posteriors of the nth 
iteration become the priors of the (n+1)th iteration. All models visited are kept in memory and, 
once enough samples have been drawn, the probability of occurrence of each model is 
estimated by its frequency of occurrence, that is, the ratio between the number of times the 
model is visited and the total number of iterations. The procedure is summarized in Figure 5-2. 

Figure 5-2. Flow diagram of the Bayesian screening and model fitting algorithm. 

The output of the Bayesian model screening algorithm illustrated in Figure 5-2 is, first, the 
probabilities of occurrence of the most appropriate members of the user-defined family of 
models; second, the goodness-of-fit indicators for each model selected; and, third, the posterior 
probabilities PDF(β|y) of effects involved in the most likely models. 

To achieve this result, however, the unknown likelihood function L(y|β) must be sampled. 
The problem of exploring an unknown PDF is solved with the Markov Chain Monte Carlo 
(MCMC) algorithm. The MCMC sampling is advantageous in this situation because it can 
sample any distribution, whether it is Gaussian or not. The MCMC sampling can be viewed 
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conceptually as an optimization solver that performs a random walk through the optimization 
space. This concept is illustrated in Figure 5-1 where the candidate models, represented 
symbolically as points of different colors in the optimization space, are visited sequentially. More 
appropriate models are guaranteed more frequent visits because the acceptance criterion of a 
given model is based on its likelihood function. A model is accepted if its value of the likelihood 
function passes a Chi-square test. This acceptance criterion implies that inappropriate models 
have a small chance of being accepted just like appropriate models have a small chance of 
rejection. If rejected, a new model is selected randomly in the neighborhood of the last accepted 
model. The sequence of models accepted is stored in memory to estimate, once the process 
has been completed, the probability of occurrence of each model. 

 
Figure 5-3. An example of random walks obtained with the Gibbs and MCMC samplers. 

The sampling procedure used in this study is the Gibbs sampler, the simplest of the many 
variants of the MCMC algorithm. The main difference between the two is that the Gibbs 
algorithm samples one direction of the search space at a time, which makes for simpler 
numerical implementation. Figure 5-3 illustrates the difference between MCMC and Gibbs 
sampling. It pictures two random walks from the lower left corner (X=0; Y=0) to the upper right 
corner (X=1; Y=1). A constraint is enforced that prevents the 30 points drawn in both sequences 
from being repeated and from moving backwards. Blue pentagram symbols show a sequence of 
Gibbs samples while red hexagram symbols picture a realization of the MCMC chain. In the 
former case, the solution is advanced in one direction at a time whereas the MCMC chain 
randomly advances the solution in the two dimensions simultaneously. 

5.4 Numerical Example of Model Screening 
A simple application is presented to illustrate the overall performance of the model 

screening procedure. Consider an output variable y defined by the following input-output model: 
t)cos(2t)sin(3 1.5cos(t) 3t)sin(2 2y −+=  (5-15)
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where t is an input variable that varies from zero to 50 sec. with increments of ∆t = 0.05 sec. It is 
assumed that the functional form of the model shown in equation (5-15) is unknown. Instead, 
sample data yd = y(d.∆t), for d = 0 … 100 points, are collected. The problem is to identify the 
numerical model that best matches the observations. The continuous solution (5-15) is shown in 
Figure 5-4 with a blue solid line and red hexagram symbols represent the data samples. 

 
Figure 5-4. Data samples used to estimate an unknown functional form. 

Next, consider a set of candidate predictors (or main effects): 
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(5-16)

In addition to the six predictors of equation (5-16), six other predictors labelled X7, X8, X9, X10, 
X11 and X12 are defined as random functions. It can be verified easily that, if the functional form 
of the output variable y were known, then it could be written exactly as: 

5432 XX1.5X2 X3y −+=  (5-15)

Clearly, y does not depend on predictors X1, X6, X7, X8, X9, X10, X11 and X12. The objective 
of model screening is to identify the model form (5-15). Equivalently, it can be stated that the 
objective of model screening is to identify the linear effects X2, X3 and the linear interaction 
effect X4X5 from all the potential combinations defined by the family of models considered. 
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The family of models defined for this illustration is composed of the linear models that 
include the twelve linear effects Xk and the linear interaction models, defined as the previous 
models augmented with the 66 interaction effects XpXq for p ≠ q. The total number of different 
effects Xk and XpXq with twelve predictors is equal to 78. The total number of different models 
that can be defined belonging to this family by combining the 78 effects is more than 3.02.10+23 
models, a rather large number to explore. 

The procedure described in the foregoing section is applied to the data using 50 samples 
dedicated to the initialisation of the Gibbs sampler and 100 samples for the computation. 
Initializing the Markov chain is referred to as “burn-in” and guarantees that the remainder of the 
chain is not biased due to a particular choice of starting point. The samples drawn during burn-
in are disregarded and only the 100 samples drawn during the optimisation itself are kept to 
estimate the final probability of occurrence of each model in the family. The top five models are 
listed in Table 5-1. It can be observed that the best model in terms of posterior model probability 
is the actual model. The mean square error for the top five models is about 0.003%. This means 
that it is not necessary to include other terms than the ones present in the best model. 

Table 5-1. Top five models selected and their number of appearances. 

Top Model Effects Posterior Probability 

1 5432 XX,X,X  52.0% 
2 105432 X,XX,X,X  3.0% 
3 435432 XX,XX,X,X  2.0% 
4 1025432 XX,XX,X,X  2.0% 
5 525432 XX,XX,X,X  2.0% 

Figure 5-5 represents the marginal posterior probability of each effect being in a particular 
model. The prior probabilities, that reflect the prior knowledge, are set to 25% for main effects 
Xk; 10% for interaction effects XpXq if one of the parent effect Xp or Xq is selected in the model; 
and 1% only for interaction effects XpXq when neither Xp nor Xq are considered in the model. 
These uniform probabilities reflect the fact that little is known about the form of the model before 
starting the analysis. It can be observed that effects 2, 3 and 43, namely X2, X3 and X4X5, are 
associated with a probability of 100% while the other effects may be ignored because their 
posterior probabilities are reduced to insignificant levels. 

In conclusion, the Bayesian model screening algorithm clearly suggests a model that 
includes the three effects X2, X3 and X4X5. The estimated regression coefficients corresponding 
to these effects are equal to 2.99, 2.02, and -1.52, respectively. They are in excellent agreement 
with the actual coefficients shown in equation (5-15). The algorithm implementation is a toolbox 
of interpreted MATLAB™ functions. Although not written to be performance-optimal, it performs 
the analysis in a few seconds of CPU time with a typical desktop personal computer. 
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Figure 5-5. Posterior probabilities of main effects (1-12) and linear interactions (13-78). 
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6. Illustration With the Vortex Evolution Test Problem 

Summary: The purpose of Section 6 is to illustrate the application of 
statistical techniques to develop error Ansatz models for solution 
convergence. The Euler equations of compressible gas dynamics are 
given because they govern the four code verification test problems used 
in Section 7. Results discussed in this section are obtained with the 
vortex evolution problem, a periodic flow that yields a non-linear but 
smooth solution. Solution convergence errors are given for the peak and 
root-mean-square values of the density, momentum, and total energy 
state variables. L1, L2, and L∞ norms of the error are calculated over the 
entire computational domain. These data sets are used to develop, first, 
linear and space-only error Ansatz equations. Quadratic convergence in 
space is observed. Then, non-linear error Ansatz models are obtained 
using the statistical screening and fitting method described in Section 5. 
The use of posterior probabilities for effect screening is illustrated. The 
convergence rates observed are 1 ≤ p ≤ 2 for the effect (∆h)p of spatial 
discretization, q = -1 for the effect (∆t)q of temporal discretization, and 
(r;s) = (2;-1) for the non-linear coupling effect (∆h)r(∆t)s. 

The statistical model fitting approach presented in Section 5 is illustrated with results from 
the vortex evolution code verification test problem. The vortex evolution problem, denoted by 
Vortex2D, features a periodic flow condition and smooth solution that nevertheless exercises 
the non-linearity of Euler equations of gas dynamics. The purpose of Section 6 is not so much to 
investigate the formulation of an error Ansatz model for solution convergence, but rather to 
illustrate the statistical tools applied here to model fitting. Section 6 also serves the purpose of 
introducing equations and notations so that they do not need to be repeated in Section 7. 

Section 6.1 introduces the laws of conservation of gas dynamics that are common to the 
four code verification test problems discussed in Section 7. Section 6.2 defines the vortex 
evolution test problem and reports computational results. The development of space-only error 
Ansatz models for solution verification is reported in Section 6-3 and non-linear, space-time 
models are discussed in Section 6-4. 

6.1 The Euler Equations of Gas Dynamics 
A general description of Euler equations of compressible, inviscid, and non-heat conducting 

gas dynamics in one dimension (1D) or two dimensions (2D) is given in equation (6-1): 
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 (6-1)

where the five state variable are density (ρ); flow velocity (Ux;Uy); thermodynamic pressure (p); 
and total energy (E). Total energy E and Specific Internal Energy (SIE) e are related by: 



FY05 ASC V&V Code Verification Project                                                        Non-linear Error Ansatz Models for Solution Verification 
 

 
Approved for unlimited public release on October 26, 2005                                                                     LA-UR-05-8228, Unclassified 

56

( )⎥⎦
⎤

⎢⎣
⎡ ++= 2

y
2
x UU

2
1eρE  (6-2)

Since these four coupled equations in 2D feature a total of five unknowns (ρ; Ux; Uy; p; e), 
a closure equation is needed that relates pressure (or, equivalently, temperature) to density and 
internal energy. The polytropic gas Equation Of State (EOS) is assumed: 

ρe1)(γp −=  (6-3)
where γ is the adiabatic exponent of ideal gas. The temperature (T) and entropy (S) are defined 
as T = p/ρ and S = p/(ργ), respectively. 

Equations (6-1) to (6-3) describe the conservation of mass, momentum, and total energy in 
an Eulerian frame for the dynamics of a single, compressible, inviscid, and non-heat-conducting 
gas. Although relatively simple, these equations can represent convergent, divergent, or 
periodic flow conditions depending on the choice of boundary and initial conditions. Because of 
their non-linearity and hyperbolic nature, equations (6-1) can result in smooth or discontinuous 
(shocked) solutions. They can also degenerate into the parabolic equation of wave propagation 
and yield a linear, smooth solution. 

The four test problems analyzed in Section 7 are all described by the system of equations 
(6-1) to (6-3), even though they represent different flow conditions (convergent vs. divergent vs. 
periodic) and provide solutions of different natures (linear vs. non-linear, smooth vs. shocked). 
Results presented in Section 6 are obtained by analyzing the Vortex2D problem using an 
Adaptive Mesh Refinement (AMR) Eulerian hydro-dynamics code developed by Dr. Shengtai Li 
of the Los Alamos National Laboratory, code known as AMR-MHD. Results shown in Section 7 
for the Noh (Noh1D and Noh2D), Sedov (Sedov1D and Sedov2D), vortex evolution (Vortex2D), 
and wave propagation (Wave2D) test problems are obtained with a Eulerian hydro-code 
developed under the Los Alamos Code Project “Crestone”. 

6.2 The Vortex Evolution Test Problem 
The vortex evolution problem solves in two dimensions the Euler equations of compressible 

gas dynamics where the mean flow initialized at density ρo = 1 gm-cm-3, pressure po = 1 dyne-
cm-2, and velocity Ux = Uy = 1 cm-sec-1 is perturbed by an isentropic vortex [17]. The 
perturbation is defined in terms of velocity δUx, δUy, and temperature δT. It is parameterized by 
a strength parameter ε whose value is selected to be ε = 5: 
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 (6-4)

where R denotes the radius, R2 = x2 + y2. The solution is continuous and the perturbation 
introduced to the mean flow (ε = 5) is strong enough that it excites the non-linearity of Euler 
equations. The perturbation is not strong enough to develop a shock. Details of the problem 
setting and derivation of an analytical solution for the continuous equations (6-1) to (6-4) are 
available from Reference [17]. 

Results presented in Section 6 are obtained with calculations performed on three uniform 
grids with a coarse resolution of 80-by-80 = 6,400 cells or ∆hC = 12.50.10-2 cm; a medium 
resolution of 120-by-120 = 14,400 cells or ∆hM = 8.33.10-2 cm; and a fine resolution of 160-by-
160 = 25,600 cells or ∆hF = 6.25.10-2 cm. Note that these grids do not provide a constant spatial 
refinement ratio since it is equal to RH = 1.50 going from the coarse grid to the medium grid and 
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it is equal to RH = 1.33 going from the medium grid to the fine grid. CFL-limited time stepping is 
implemented with three Courant-Friedrichs-Levy (CFL) conditions, NCFL = 0.90, NCFL = 0.45, and 
NCFL = 0.04. The CFL number, denoted by NCFL, is approximately equal to: 

( )SoundCFL ωmax
∆h
∆tN ⎟

⎠
⎞

⎜
⎝
⎛≈  (6-5)

where max(ωSound) denotes the maximum speed of sound that the computational grid must be 
able to capture. 

Because the flow is compressible, the maximum sound speed changes and NCFL and the 
corresponding time steps ∆t are not kept perfectly constant during the entire simulation. It is 
verified, however, that the variation is small (less than 10%) and only a few cycles need to use 
CFL numbers that vary significantly from the nominal settings of NCFL = 0.90, NCFL = 0.45, and 
NCFL = 0.04. These target CFL conditions are therefore treated as constant in this analysis. 

Other settings of the vortex evolution problem are that the size of the computational domain 
is [0; 10]-by-[0; 10] cm2 and equations are integrated in time and space for a total duration of 
100 sec. The density (ρ), momentum in the X-direction (ρUx), momentum in the Y-direction 
(ρUy), and total energy (E) state variables are outputted at the final time of 100 sec. The results 
presented below are for these four output fields. 

 
Figure 6-1. Analytical and numerical density fields of the Vortex2D problem. 

Figure 6-1 compares three numerical solutions obtained for the density state variable to the 
exact solution over a small region of the computational domain, 4.6 ≤ X ≤ 5.4 cm and Y = 
constant = 5 cm. The numerical solutions are obtained with NCFL = 0.90. Comparison with the 
exact solution indicates convergence as ∆h  0. 
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A typical issue of solution verification is also illustrated by Figure 6-1. The process of grid 
refinement produces successive cells that do not, except by chance, overlap with each other. A 
consequence is that the (unknown) solution is evaluated at different locations within each 
computational grid. Such offsets between points of the coarse, medium, and fine discretizations 
are clearly visible in Figure 6-1. One solution to handle this mismatch would be to spatially 
average all results from the fine and medium grids onto the coarse grid. This avenue is not 
followed here because it would result in somewhat of a loss of information. 

Another concern, mentioned for completeness, is to output values estimated at the center 
of a computational cell. This commonly encountered practice is questionable for codes that rely 
on finite volume approximations [24]. The argument is summarized in the paragraph below: 

“Technically, the exact solution at the center of the computational cell should not 
be used for codes that employ finite volume schemes, and not finite difference 
schemes, as does the RAGE code used in this study. Instead, the integrated 
average of the exact solution over the entire cell should be used. However, 
previous experience and numerous calculations using the RAGE code have 
shown little difference in the results between convergence calculations that use 
the exact solution at the zone center and calculations using the integral of the 
exact solution across the zone. We decided to use the value at the zone center 
for this study.” (From Reference [24].) 

The same strategy is adopted in this study because the hydro-code used is designed to reach 
second-order accuracy. (Note, however, that using averages vs. point-wise values of the exact 
solution could be a potential issue if the numerical solver were third-order accurate.) 

Table 6-1 compares the exact peak values of state variables (ρ; ρUx; ρUy; E) to the peak 
values obtained from numerical calculations. Table 6-2 provides a similar comparison for the 
Root Mean Square (RMS) values. In both cases, the top section of tables lists values extracted 
from the solutions of the continuous equations; the middle section lists values extracted from the 
numerical solutions; and the bottom section lists the differences between exact and numerical 
values. Differences δ are expressed as percentages of the exact values: 
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where “z” denotes a feature of the exact or numerical solution, here, either the peak or RMS 
value. A peak value is a point-wise quantity, that is, a value obtained at a single cell of the 
computational domain, while a RMS value provides an average over the entire domain. To 
make averages independent from the number of cells upon which they are calculated, RMS 
values are scaled to the number of cells defined in a particular grid: 
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where NCells is the number of cells; “y” denotes either the exact solution (y = y*) or numerical 
solution (y = yh,t); and “k” is the cell identifier, k = 1 … NCells. 

It is observed from Tables 6-1 and 6-2 that agreement between the exact and numerical 
solutions is excellent, up to the second digit for all state variables and calculations. Relative 
errors are less than 1% in all cases, with only three peak value errors greater than 0.5% and 
only three RMS value errors greater than 0.1%. Convergence to the exact solution as the grid is 
refined, ∆h  0, is clearly visible for the peak and RMS values. It can also be observed that 
refining the time step, ∆t  0, which corresponds to running the hydro-calculation at lower CFL 
numbers, tends to increase the solution error. 
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Table 6-1. Exact and numerical solutions for peak values (Vortex2D). 

Run Settings Exact Solutions for Peak Values 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1)

12.50.10-2 0.90 1.0000 1.5437 1.5437 4.2542
8.33.10-2 0.90 1.0000 1.5437 1.5437 4.2542
6.25.10-2 0.90 1.0000 1.5437 1.5437 4.2542

12.50.10-2 0.45 1.0000 1.5472 1.5472 4.2528
8.33.10-2 0.45 1.0000 1.5472 1.5472 4.2528
6.25.10-2 0.45 1.0000 1.5472 1.5472 4.2528

12.50.10-2 0.04 1.0000 1.5465 1.5465 4.2539
8.33.10-2 0.04 1.0000 1.5465 1.5465 4.2539

Run Settings Numerical Solutions for Peak Values 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1)

12.50.10-2 0.90 1.0002 1.5378 1.5380 4.2522
8.33.10-2 0.90 1.0002 1.5336 1.5368 4.2499
6.25.10-2 0.90 1.0002 1.5297 1.5340 4.2424

12.50.10-2 0.45 1.0001 1.5460 1.5462 4.2529
8.33.10-2 0.45 1.0001 1.5443 1.5461 4.2522
6.25.10-2 0.45 1.0002 1.5416 1.5453 4.2487

12.50.10-2 0.04 1.0001 1.5465 1.5466 4.2542
8.33.10-2 0.04 1.0001 1.5456 1.5466 4.2527

Run Settings Relative Differences, δ = (Exact–Numerical)/Exact 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

δ-error, ρ 
(x10-2%) 

δ-error, ρUx 
(x10-2%) 

δ-error, ρUy 
(x10-2%) 

δ-error, E 
(x10-2%) 

12.50.10-2 0.90 -2.00 38.22 36.92 4.70
8.33.10-2 0.90 -2.00 65.43 44.70 10.11
6.25.10-2 0.90 -2.00 90.69 62.84 27.74

12.50.10-2 0.45 -1.00 7.76 6.46 -0.24
8.33.10-2 0.45 -1.00 18.74 7.11 1.41
6.25.10-2 0.45 -2.00 36.19 12.28 9.64

12.50.10-2 0.04 -1.00 0 -0.65 -0.71
8.33.10-2 0.04 -1.00 5.82 -0.65 2.82

A difference in convergence behavior of peak and RMS values is noticeable. Convergence 
of RMS values to the exact solution as ∆h  0 in Table 6-2 seems “faster” than convergence of 
peak values in Table 6-1. This observation is due to the fact that convergence of a point-wise 
quantity, that is, a quantity estimated at a single computational cell, is more difficult to achieve 
than convergence of an average. This remark strengthens the claim that caution should be 
exercising when formulating point-wise error models such as those of equations (4-9) or (4-20). 
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Table 6-2. Exact and numerical solutions for RMS values (Vortex2D). 

Run Settings Exact Solutions for RMS Values 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1)

12.50.10-2 0.90 0.9846 0.9949 0.9949 3.4620
8.33.10-2 0.90 0.9846 0.9949 0.9949 3.4620
6.25.10-2 0.90 0.9846 0.9949 0.9949 3.4620

12.50.10-2 0.45 0.9846 0.9949 0.9949 3.4620
8.33.10-2 0.45 0.9846 0.9949 0.9949 3.4620
6.25.10-2 0.45 0.9846 0.9949 0.9949 3.4620

12.50.10-2 0.04 0.9846 0.9949 0.9949 3.4620
8.33.10-2 0.04 0.9846 0.9949 0.9949 3.4620

Run Settings Numerical Solutions for RMS Values 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1)

12.50.10-2 0.90 0.9844 0.9942 0.9942 3.4606
8.33.10-2 0.90 0.9843 0.9940 0.9939 3.4601
6.25.10-2 0.90 0.9842 0.9936 0.9936 3.4595

12.50.10-2 0.45 0.9845 0.9947 0.9947 3.4616
8.33.10-2 0.45 0.9845 0.9946 0.9946 3.4614
6.25.10-2 0.45 0.9845 0.9945 0.9945 3.4612

12.50.10-2 0.04 0.9846 0.9948 0.9948 3.4618
8.33.10-2 0.04 0.9846 0.9948 0.9947 3.4618

Run Settings Relative Differences, δ = (Exact–Numerical)/Exact 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

δ-error, ρ 
(x10-2%) 

δ-error, ρUx 
(x10-2%) 

δ-error, ρUy 
(x10-2%) 

δ-error, E 
(x10-2%) 

12.50.10-2 0.90 2.03 7.04 7.04 4.04
8.33.10-2 0.90 3.05 9.05 10.05 5.49
6.25.10-2 0.90 4.06 13.07 13.07 7.22

12.50.10-2 0.45 1.02 2.01 2.01 1.16
8.33.10-2 0.45 1.02 3.02 3.02 1.73
6.25.10-2 0.45 1.02 4.02 4.02 2.31

12.50.10-2 0.04 0 1.01 1.01 0.58
8.33.10-2 0.04 0 1.01 2.01 0.58

A difference in convergence behavior of peak and RMS values is noticeable. Convergence 
of RMS values to the exact solution as ∆h  0 in Table 6-2 seems “faster” than convergence of 
peak values in Table 6-1. This observation is due to the fact that convergence of a point-wise 
quantity, that is, a quantity estimated at a single computational cell, is more difficult to achieve 
than convergence of an average. This remark strengthens the claim that caution should be 
exercising when formulating point-wise error models such as those of equations (4-9) or (4-20). 
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6.3 Linear, Space-only Error Ansatz Models for the Vortex Problem 
In this section, results are presented of formulating linear, space-only error Ansatz models 

for studying solution convergence. This approach is consistent with common practices for code 
verification and solution self-convergence, such as those encountered for the verification of 
Eulerian or Lagrangian hydro-dynamics [12] or structural mechanics [6] calculations. 

When assessing solution convergence error, it is common practice to account for the nature 
of the functions being solved for by using an appropriate norm of the Lp family. The L2 norm is 
the natural choice for continuous functions while L1 or L∞ norms are preferred for discontinuous 
functions. The Euclidean (L2) norm is used in the remainder because the flow condition for the 
Vortex2D problem is smooth (non-shocked). 

Solution convergence errors are calculated over the computational domain 0 ≤ X ≤ 10 cm 
and 0 ≤ Y ≤ 10 cm with the L1, L2, and L∞ norms. Values are reported in Table 6-3 for the density 
(ρ), X-momentum (ρUx), Y-momentum (ρUy), and total energy (E) state variables. Being defined 
as an average, the L1 and L2 norms are scaled as (1/NCells) to avoid biasing the results by the 
number of cells used in the computational grid: 
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 (6-8)

Note that, being a point-wise quantity estimated on the single computational cell that returns the 
maximum error, the L∞ norm does not need to be scaled like the L1 and L2 norms are. 

The same trends seen in Tables 6-1 and 6-2 are also visible in Table 6-3. First, the three Lp 
norms indicate convergence as the computational grid is refined, ∆h  0, for all state variables 
reported in Table 6-3. Second, running the calculation at a lower CFL number tends to increase 
the solution error, hence, suggesting a time effect (∆t)q where the exponent is negative, q < 0. 

Values obtained with the L2 norm of solution errors for the total energy field (E) are shown 
graphically in Figures 6-2 and 6-3. The three curves in Figure 6-2 correspond to different CFL 
conditions. The figure shows convergence as a function of cell size. Since the curves obtained 
with smaller CFL numbers are “above” those obtained with larger CFL numbers, Figure 6-2 also 
indicates that solution convergence errors increase as ∆t  0. Discontinuity in the slope of 
curves obtained at NCFL = 0.90 and NCFL = 0.45 are observed because the refinement ratios are 
different, as previously noted, between the coarse-to-medium grids and medium-to-fine grids. 
Visually, the convergence with spatial discretization, (∆h)p, occurs at a rate estimated between 
one and two, 1 ≤ p ≤ 2, because the solution error decreases as (RH)1 to (RH)2. 

The three error curves in Figure 6-3 correspond to different computational grids. The figure 
shows convergence as a function of CFL condition. Visual observation of Figure 6-3 indicates 
that convergence with the CFL condition, (NCFL)q or (∆t)q, occurs at a rate between minus one 
and minus two, -1 ≤ q ≤ -2, because the solution error decreases as (RH)-2 to (RH)-1. Negative 
exponents are consistent with the fact that the solution error is inversely proportional to NCFL. 
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Table 6-3. L1, L2, and L∞ norms of the numerical solution error (Vortex2D). 

Run Settings L1 Norms of Solution Convergence Error 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1) 

12.50.10-2 0.90 0.18.10-2 0.44.10-2 0.54.10-2 1.04.10-2

8.33.10-2 0.90 0.35.10-2 0.90.10-2 1.18.10-2 2.11.10-2

6.25.10-2 0.90 0.58.10-2 1.53.10-2 2.01.10-2 3.57.10-2

12.50.10-2 0.45 0.07.10-2 0.17.10-2 0.22.10-2 0.39.10-2

8.33.10-2 0.45 0.15.10-2 0.38.10-2 0.52.10-2 0.90.10-2

6.25.10-2 0.45 0.26.10-2 0.70.10-2 0.94.10-2 1.64.10-2

12.50.10-2 0.04 0.03.10-2 0.09.10-2 0.12.10-2 0.20.10-2

8.33.10-2 0.04 0.08.10-2 0.21.10-2 0.29.10-2 0.49.10-2

Run Settings L2 Norms of Solution Convergence Error 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1) 

12.50.10-2 0.90 0.60.10-2 1.15.10-2 1.47.10-2 3.28.10-2

8.33.10-2 0.90 1.21.10-2 2.31.10-2 3.23.10-2 6.71.10-2

6.25.10-2 0.90 1.98.10-2 3.84.10-2 5.39.10-2 10.98.10-2

12.50.10-2 0.45 0.23.10-2 0.45.10-2 0.61.10-2 1.29.10-2

8.33.10-2 0.45 0.54.10-2 1.00.10-2 1.45.10-2 2.94.10-2

6.25.10-2 0.45 0.97.10-2 1.80.10-2 2.64.10-2 5.27.10-2

12.50.10-2 0.04 0.12.10-2 0.24.10-2 0.33.10-2 0.68.10-2

8.33.10-2 0.04 0.30.10-2 0.55.10-2 0.81.10-2 1.62.10-2

Run Settings L∞ Norms of Solution Convergence Error 

Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

Density, ρ 
(gm-cm-3) 

Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1) 

12.50.10-2 0.90 8.29.10-2 11.34.10-2 16.04.10-2 48.34.10-2

8.33.10-2 0.90 16.19.10-2 20.65.10-2 34.17.10-2 95.02.10-2

6.25.10-2 0.90 24.47.10-2 32.21.10-2 53.86.10-2 145.92.10-2

12.50.10-2 0.45 3.37.10-2 4.83.10-2 7.32.10-2 20.41.10-2

8.33.10-2 0.45 7.26.10-2 9.29.10-2 16.66.10-2 44.38.10-2

6.25.10-2 0.45 12.48.10-2 15.56.10-2 29.19.10-2 76.32.10-2

12.50.10-2 0.04 1.74.10-2 2.62.10-2 3.97.10-2 10.82.10-2

8.33.10-2 0.04 0 1.01.10-2 2.01.10-2 0.58.10-2
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Figure 6-2. Convergence of the total energy field as a function of ∆h (Vortex2D). 

 
Figure 6-3. Convergence of the total energy field as a function of NCFL (Vortex2D). 
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The next step of the analysis is to use the data listed in Table 6-3 to best-fit a spatial error 
Ansatz model that takes the following functional form: 

( ) .T.O.H∆hββyy*e p
1oLth,h p ++=−=  (6-9)

Equation (6-9) restricts the analysis to monotonic convergence behavior and it assumes that the 
CFL condition and, therefore, the time step, have no significant effect on the prediction of 
solution error. This latter assumption is clearly contradicted by Figures 6-2 and 6-3. 

A non-linear optimization solver is used to fit the unknown parameters (βo;β1;p) of the error 
Ansatz model. The cost function for numerical optimization is defined as: 

( )∑
=

− −=−=
RunsN1k

2
hh

Runs

MSE (k)ê(k)e
N

1MSE     , e1C
L

 (6-10)

where eh denotes the solution error values listed in Table 6-3; êh represents predictions of the 
error Ansatz equation (6-9); NRuns is the number of available computer runs (here, NRuns = 8); 
and “k” identifies the computer run, k = 1 … NRuns. The exponential function serves the purpose 
of accentuating the “shape” of the Mean Square Error (MSE), which speeds-up convergence. 

For a given combination of model parameters (βo;β1;p), the solution errors êh are estimated 
using equation (6-9), then, the goodness-of-fit of this particular model is assessed with equation 
(6-10). The numerical optimization solver uses this information to calculate gradients and to 
search for the triplet (βo;β1;p) of model parameters that minimize the cost function. Convergence 
criteria are defined to stop the optimization iterations when model parameters are not modified 
by more than 10-6 or the cost function has decreased by a factor of 10-3 compared to its initial 
value. The algorithm used is the Simplex algorithm of MATLABTM (named “fminsearch”) that 
implements a gradient-based search of the steepest descent. 

It is also verified that a least-squares solver provides the same solution as the non-linear 
optimization solver. The least-squares solver handles over-determined systems, that is, the fact 
that 8 equations are available to fit only 3 parameters, using a Singular Value Decomposition 
(SVD) algorithm that eliminates any singularity or ill-conditioning of the effect matrix, therefore, 
making it possible to invert it. 

Table 6-4. Parameters of linear, spatial error Ansatz models (Vortex2D). 

State Variable Response Estimate of 
Model Parameter Density, ρ 

(gm-cm-3) 
Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1) 

Exponent, p 1.9882 1.7703 1.6261 1.2915 
Intercept, βo -0.0008 -0.0036 -0.0062 -0.0273 
Slope, β1 0.8456 1.1182 1.1815 1.4326 

Solutions (βo;β1;p) are listed in Table 6-4 for the four state variables density (ρ), X-
momentum (ρUx), Y-momentum (ρUy), and total energy (E) when the L2 norm metric is used to 
define solution convergence errors. The exponent (p) is dimensionless. The intercept coefficient 
(βo) is given in units of EU and the slope coefficient (β1) is given in units of EU-cm-p, where the 
Engineering Units (EU) used are specific to the state variable considered. For example, EU = 
gm-cm-3 for the density field. 

Two observations are made. First, the intercept coefficients are more than two orders of 
magnitude smaller than the slope coefficients, except for the energy state variable. The 
significance of the intercept coefficient is that, if the numerical method under consideration is 
consistent, then the 0th-order error should be zero. The small values obtained indicate 
consistency, that is, the numerical solution converges to the continuous solution as ∆h  0. The 
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second observation is that, with the exception of the energy field, values of the exponent 
indicate near-to-quadratic convergence rates. This result matches the theoretical order of spatial 
convergence (p = 2) for the hydro-code considered in the presence of a smooth flow. 

6.4 Non-linear, Space-time Error Ansatz Models for the Vortex Problem 
To assess, first, the effect of time discretization on solution convergence and, second, the 

degree of to which spatial and temporal discretization effects may be coupled, a non-linear error 
Ansatz model is investigated: 

( ) ( ) ( ) ( ) .T.O.H∆t∆hβ∆tβ∆hββyy*e sr
3

q
2

p
1oLth,h p ++++=−=  (6-11)

Data sets from Table 6-3 are used, as before, to fit the unknown parameters (βo;β1;β2;β3;p;q;r;s) 
of equation (6-11). The results reported below are obtained by using the L2 norm of solution 
errors for the four state variables density, x-momentum, y-momentum, and total energy. 

To develop an error Ansatz equation that is a function of the time step (∆t), as opposed to 
the CFL condition (NCFL), a characteristic time scale is sought for each run. Time step statistics 
shown in Table 6-5 are obtained by examining the output of the code that has the capability to 
dump the increment ∆t used at each cycle of the time integration scheme. It is observed that the 
time steps selected during the simulation do not vary significantly (less than 10% variation) and 
that the maximum values are very close to the mean values. The maximum time step (∆tMax) is 
used to define a characteristic time scale for each run because a general principle for solving 
hyperbolic systems of PDE is to select a time step closest to the stability limit (CFL condition). 
This helps to keep the numerical dispersion and dissipation small. 

Table 6-5. Time steps observed during the simulation runs (Vortex2D). 
Run 

Number 
Cell Size, 
∆h (cm) 

NCFL 
(Unitless) 

 ∆tMean 
(sec.) 

∆tMax 
(sec.) 

σ(∆t) 
(sec.) 

Coefficient of 
Variation, σ(∆t)/∆tMean 

1 12.50.10-2 0.90 0.0385 0.0396 0.0035 8.99% 
2 8.33.10-2 0.90 0.0195 0.0200 0.0013 6.92% 
3 6.25.10-2 0.90 0.0010 0.0010 0.0000 1.58% 
4 12.50.10-2 0.45 0.0254 0.0259 0.0024 9.56% 
5 8.33.10-2 0.45 0.0128 0.0130 0.0009 6.78% 
6 6.25.10-2 0.45 0.0006 0.0006 0.0000 0.87% 
7 12.50.10-2 0.04 0.0191 0.0193 0.0015 8.06% 
8 8.33.10-2 0.04 0.0096 0.0097 0.0005 5.00% 

The design of computer experiments used for this study consists of the eight runs shown in 
Table 6-5 characterized by two input factors, the cell size (∆h) and the maximum time step 
(∆tMax). Error Ansatz models are formulated for the L2 norm of solution error. 

The statistical effect screening and model fitting algorithm described in Section 5 is applied 
to analyze the family of error Ansatz models defined by equation (6-11). The Gibbs sampler that 
randomly walks the family of models is initialized with 50 iterations for burn-in and 200 iterations 
for constructing the Markov Chain Monte Carlo (MCMC) sample from which the posterior 
probability of each effect is estimated. The difference between the first 50 iterations (burn-in) 
and the next 200 (random walk) is that models visited during the former are disregarded in an 
attempt to reduce the influence of the starting point on the final marginal probabilities of effects. 
The prior probabilities are initialized at 25% for the main effects; 10% for a linear interaction that 
includes an effect also selected as main effect; and 1% only for a linear interaction that includes 
no effect selected as main effect. The goodness-of-fit of each model visited during the random 
walk is assessed using the MSE statistic defined in equation (6-10). As explained in Section 5, 
models that are capable of fitting the data better tend to be visited more often. At the end of the 



FY05 ASC V&V Code Verification Project                                                        Non-linear Error Ansatz Models for Solution Verification 
 

 
Approved for unlimited public release on October 26, 2005                                                                     LA-UR-05-8228, Unclassified 

66

200 iterations, the posterior probabilities of effects are estimated by counting how many times 
they appear in the most-often visited models. Details of the procedure are provided in Section 5. 

Since the algorithm has the capability to explore linear interactions as well as main effects, 
this is taken advantage of by defining the family of models as follows: 

R654321oLth,h εBCβACβABβCβBβAββyy*e p ++++++++=−=  (6-12)
where the residual fitting error εR ~ N(0;σR) is assumed to be a Gaussian-distributed random 
noise of unknown variance. The three main effects, labeled “A”, “B”, and “C” in equation (6-12) 
represent the spatial and temporal discretization effects considered. Because nothing prevents 
these effects from depending on one another, they are initialized as A = (∆h)p, B = (∆tMax)q, and 
C = (∆h)r(∆tMax)s. Substitution into equation (6-12) gives the functional form of the family of error 
Ansatz models visited by the MCMC algorithm: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) R

sq
Max

r
6

s
Max

rp
5

q
Max

p
4

s
Max

r
3

q
Max2

p
1oLth,h

ε∆t∆hβ∆t∆hβ∆t∆hβ

∆t∆hβ∆tβ∆hββyy*e p

++++

++++=−=
++

 (6-13)

Including the linear interaction terms (“AB”, “AC”, and “BC”) provides a “sanity check” that the 
basic functional form of the error Ansatz equation (6-11) is correct. If equation (6-11) captures 
the phenomenon correctly, then it is reasonable to expect that none of the interaction terms 
shown on the second line of equation (6-13) will come up with a significant posterior probability. 

Table 6-6. Parameters of non-linear, space-time error Ansatz models (Vortex2D). 

State Variable Response Estimate of 
Model Parameter Density, ρ 

(gm-cm-3) 
Momentum, ρUx 
(gm-cm-2-sec-1) 

Momentum, ρUy 
(gm-cm-2-sec-1) 

Energy, E 
(erg-gm-1) 

Exponent, p 2.151 1.779 1.574 1.129
Exponent, q -0.978 -1.212 -1.092 -1.461
Exponent, r 2.068 1.934 1.841 1.865
Exponent, s -1.209 -1.169 -1.207 -1.224
Intercept, βo 7.448.10-3 14.170.10-3 19.920.10-3 40.960.10-3

Coefficient, β1 2.251.10-3 5.896.10-3 5.365.10-3 16.690.10-3

Coefficient, β2 -0.208.10-3 0.194.10-3 -0.690.10-3 0.391.10-3

Coefficient, β3 4.533.10-3 4.965.10-3 10.780.10-3 14.820.10-3

Coefficient, β4 -0.276.10-3 0.333.10-3 -0.431.10-3 -0.933.10-3

Coefficient, β5 0.433.10-3 0.366.10-3 -0.092.10-3 -0.769.10-3

Coefficient, β6 -0.027.10-3 0.341.10-3 -0.023.10-3 1.782.10-3

The results of Bayesian model screening are summarized in Tables 6-6 and 6-7. Table 6-6 
lists the model parameters (βo;β1;β2;β3;p;q;r;s) that correspond to the most-often visited solution 
error Ansatz models for each of the state variables considered. Also listed are the coefficients 
(β4;β5;β6) added to study the significance of interaction terms in equation (6-13). Like for Table 
6-4, the exponents (p;q;r;s) are dimensionless. The regression coefficients (βk) are given in units 
of EU-cm-a-sec-b where “a” and “b” denote the space and time exponents of the corresponding 
effect, and EU denotes the engineering unit of the state variable considered. For example, the 
regression coefficient β3 is listed in units of EU-cm-r-sec.-s in Table 6-6. 

Overall, it can be observed from Table 6-6 that the rates of convergence are found to be 
between one and two (1 ≤ p ≤ 2) for the effect (∆h)p of spatial discretization; q = -1 for the effect 
(∆tMax)q of temporal discretization; and (r;s) = (2;-1) for the non-linear coupling effect between 
space and time (∆h)r(∆tMax)s. These results do not contradict those of the space-only error 
analysis documented in Table 6-4. It is interesting to note that the coupling term (∆h)2(∆tMax)-1 
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can be viewed as a linear interaction between the space discretization effect and the cell size-
to-time step ratio, that is, (∆h)1(VCell)1 where VCell = (∆h/∆t) would be a new explanatory variable 
that represents the speed at which a cell can propagate information to its neighbors. 

Table 6-7 lists the prior and posterior probabilities of each effect. The effects investigated 
include those of the generic error Ansatz model (6-11) together with the space-time interactions 
added on the second line of equation (6-13). Effect screening consists of jointly examining the 
Tables 6-6 and 6-7 to identify those effects that provide high posterior probabilities as well as 
large values of the regression coefficient. 

Table 6-7. Prior and posterior probabilities for effect screening (Vortex2D). 

Density 
(ρ) 

X-momentum 
(ρUx) 

Y-momentum 
(ρUy) 

Energy 
(E) Effect Considered 

Prior Posterior Prior Posterior Prior Posterior Prior Posterior 

β1(∆h)p 25% 78% 25% 99% 25% 66% 25% 100% 

β2(∆tMax)q 25% 17% 25% 28% 25% 18% 25% 34% 

β3(∆h)r(∆tMax)s 25% 49% 25% 67% 25% 72% 25% 60% 

β4(∆h)p(∆tMax)q 10% 9% 10% 6% 10% 15% 10% 6% 

β5(∆h)p+r(∆tMax)s 10% 7% 10% 31% 10% 13% 10% 23% 

β6(∆h)r(∆tMax)q+s 10% 9% 10% 13% 10% 18% 10% 7% 

Based on examining the increase in posterior probability (or lack thereof), the algorithm 
suggests to restrict the error Ansatz models to the space discretization effect (∆h)p and space-
time coupling (∆h)r(∆tMax)s for all state variables considered. The other effects are eliminated 
without significantly degrading the goodness-of-fit. The resulting error Ansatz equation is: 

( ) ( ) ( )sr
3

p
1oLth,h ∆t∆hβ∆hββyy*e p ++=−=  (6-14)

with exponents and coefficients listed in Table 6-6 for each state variable. It is emphasized that 
this equation applies only to the prediction of L2 error norms, as defined in expression (6-8). 

For the density (ρ), the best model (6-14) is visited 65 times in 200 iterations and its MSE is 
equal to 20.5%. For the momentum in the X-direction (ρUx), the best model (6-14) is visited 55 
times in 200 iterations and its MSE is equal to 19.3%. For the momentum in the Y-direction 
(ρUy), the best model (6-14) is visited 57 times in 200 iterations and its MSE is equal to 21.0%. 
For the total energy (E), the best model (6-14) is visited 53 times in 200 iterations and its MSE is 
equal to 18.8%. 

The fact that the interaction terms added on the second line of equation (6-13) are rejected 
is good news. It means that the optimization search does not need to include them to improve 
the goodness-of-fit. This is interpreted as evidence that the functional form of the space-time 
error Ansatz model proposed in equation (6-11) is correct. A color code is shown in Table 6-7 to 
summarize the results. The significant effects are shown in green, the non-significant effects 
are shown in red, and the effects that it might be prudent to include are shown in gold. 
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7. Results Obtained With Four Code Verification Test Problems 

Summary: The results of fitting space-only and space-time models of 
solution convergence error are illustrated with four code verification test 
problems. The test problems are selected to represent a combination of 
convergent, divergent, or periodic flows; linear or non-linear equations; 
and smooth or shocked solutions. Another criterion of definition of test 
problems is that an analytical solution of the equations is available in 
closed form. The test problems are based on the Euler equations of 
compressible gas dynamics, solved either in one dimension (spherical) 
or in two dimensions. The Noh problem represents the non-linear and 
shocked compression of an ideal gas. The Sedov problem is a non-linear 
and shocked expansion of a blast-wave. The vortex evolution problem 
provides a non-linear but smooth solution. Finally, the wave propagation 
problem provides a linear and smooth solution. Results obtained with 
the four test problems indicate, first, that the functional form of the 
model matters greatly and, second, that time effects are almost always 
found to be significant. 

The results obtained are illustrated with four code verification test problems. The test 
problems have in common that they all solve the Euler equations of compressible gas dynamics 
in one dimension (1D) or two dimensions (2D). Where they differ is that they represent 
convergent (Noh), divergent (Sedov), or periodic (Vortex, Wave) flow conditions. Their solutions 
are either shocked (Noh, Sedov) or smooth (Vortex, Wave). These characteristics of test 
problems are summarized in Table 7-1. Table 7-2 lists the symbols and notations used. 

Table 7-1. Characteristics of the four code verification test problems. 

Type of Equations Type of Solutions 
Test Problem Symbol Dimension 

Linear Non-linear Smooth Shocked 

Noh Noh1D 1D  •  • 
Noh Noh2D 2D  •  • 
Sedov Sedov1D 1D  •  • 
Sedov Sedov2D 2D  •  • 
Vortex Evolution Vortex2D 2D  • •  
Wave Propagation Wave2D 2D •  •  

Flow Condition 
Test Problem Symbol Dimension 

Convergent Divergent Periodic 

Noh Noh1D 1D •   
Noh Noh2D 2D •   
Sedov Sedov1D 1D  •  
Sedov Sedov2D 2D  •  
Vortex Evolution Vortex2D 2D   • 
Wave Propagation Wave2D 2D   • 
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Table 7-2. Symbols and notations used in Section 7. 

Symbol Description Units 

ρ  Density  g-cm-3 
p  Pressure  dyne-cm-2 = 10-1 Pa (N-m-2) 

Ux, Uy  Flow velocity  cm-sec.-1 
E  Total energy  erg-gm-1 
e  Specific Internal Energy (SIE)  erg-gm-1 
T  Temperature  eV 
y*  Exact solution of the continuous equations  Engineering Units (EU) 
yh,t  Numerical solution of the discretized equations  Engineering Units (EU) 
eh  Solution error, eh = || y* – yh,t ||  Engineering Units (EU) 
∆h  Cell or element size  cm 
∆t  Time step  sec. 

p, q, r, s  Exponents of the solution error model  None 
βk  Regression coefficients of the error model  Engineering Units (EU) 

( )C, ( )M, ( )F  Subscripts for coarse, medium, and fine resolutions  N/A 

The hydro-code RAGE developed under the Los Alamos Code Project “Crestone” is used 
to solve the four code verification test problems considered. RAGE is an Adaptive Mesh 
Refinement (AMR) Eulerian hydro-dynamics code that uses a Riemann solver-based Godunov 
method to obtain the solution of the gas dynamics equations [2]. RAGE release 2005.03.31.000 
is used on the Los Alamos platform QSC for this work. Cell refinement is triggered by either a 
high degree of cell compression or the detection of large gradients in the density or pressure 
fields. The time stepping strategy implemented in RAGE for AMR grids is the so-called “locked” 
approach where all cells, refined or not, use the same (smallest) time step to advance their 
solution in time. Only 1D or 2D Cartesian geometries are considered in the test problems. Even 
though the methodology proposed is general-purpose, discretization along different dimensions 
is constrained to be equivalent, ∆hx = ∆hy. With minor modification, the error Ansatz models 
may be extended to other multi-dimension geometries or discretization schemes without 
equivalent spacing. 

Results of the analyses of the four code verification test problems are discussed below. 
Each time the test problem is introduced by briefly discussing its setting and characteristics of 
the analysis performed. Then, the main results are presented by focusing on comparing the 
solution convergence error Ansatz models formulated in space only to those that include time-
space coupling terms. The Noh problem is discussed in Section 7.1, followed by the Sedov 
problem (Section 7.2), the vortex evolution problem (Section 7.3) and, finally, the wave 
propagation problem (Section 7.4). A brief description of the toolbox created to generate these 
results is included in Section 7-5. 

7.1 Results Obtained With the Noh Test Problem 
The Noh problem represents the shocked compression of an ideal gas. The non-linearity of 

Euler equations is exercised and the solution is non-smooth (discontinuous). An initial density of 
ρ = 1.0 gm-cm-3 is directed towards the origin at the flow velocity Ux = -1.0 cm-sec-1. It results in 
an infinite strength circularly symmetric shock reflecting from the origin.17 References [19] and 
[20] describe the setting of the Noh problem and its analytic solution, available in a reference 

                                                 
17 See Reference [19] and, more recently, Reference [20]. 
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frame relative to the shock position. The Noh problem tests the ability of the code to convert 
kinetic energy into internal energy. 

The Euler equations for the Noh problem are solved in one dimension with a spherical 
symmetry. The design of computer experiments is a three-level full-factorial array totaling 32 = 9 
runs with cell sizes ∆h = (10-1 | 10-2 | 10-3) cm and time steps ∆t = (10-2 | 10-3 | 10-4) sec. The 
refinement ratios are therefore RH = 10 in space and RT = 10 in time. Results are reported at the 
final simulation time of 0.6 sec. Figure 7-1 illustrates the full-factorial design of experiments 
where star symbols represent the nine settings (∆h;∆t) of cell sizes and time steps at which the 
computer code is analyzed. Pairs (∆h;∆t) illustrated in Figure 7-1 are listed in the table below: 
 

Run 
Number 

Cell Size, 
∆h (cm) 

Time Step, 
∆t (sec.) 

Run 
Number 

Cell Size, 
∆h (cm) 

Time Step, 
∆t (sec.) 

1 10-1 10-2 6 10-3 10-3 
2 10-2 10-2 7 10-1 10-4 
3 10-3 10-2 8 10-2 10-4 
4 10-1 10-3 9 10-3 10-4 
5 10-2 10-3 

 

   
 

 
Figure 7-1. Full-factorial design of computer experiments for the Noh1D problem. 
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Figure 7-2. Analytical and numerical pressure fields of the Noh1D problem. 

 
Figure 7-3. Analytical and numerical density fields of the Noh1D problem. 
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Figure 7-2 illustrates three numerical solutions for the pressure fields obtained with settings 
(∆hC;∆tC), (∆hM;∆tM), and (∆hF;∆tF). Figure 7-3 shows a similar illustration for the density fields. 
In both cases, the exact solution is shown and it can be observed that the most refined solution 
provided with (∆hF;∆tF) is in good qualitative agreement with the exact solution. Note that, 
because the size of the computational domain is [0; 2] cm, Figures 7-2 and 7-3 emphasize a 
small region near the shock (discontinuity) at coordinate X = 0.2 cm. 

Tables 7-3 and 7-4 list the solution convergence error Ansatz models obtained for the 
pressure and density fields, respectively. The Euclidean L2 norm is used to calculate the error 
between numerical and exact solutions over the entire computational domain, that is, 0 ≤ X ≤ 2 
cm. Because the numerical solutions are obtained with different numbers of cells (20, 200, and 
2,000 cells for the coarse, medium, and fine resolutions) and to avoid biasing the analysis, the 
L2 norm of solution error is scaled by the total numbers of cells of each calculation: 

( )∑
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−=
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2
th,

*

Cells
h (k)y(k)y

N
1e

L

 (7-1)

where NCells denotes the total number of cells used in a calculation and the index “k” is the cell 
identifier, 1 ≤ k ≤ NCells. Although not used here, the L1 norm is always scaled in a similar way. 
(Being defined as a maximum value, the L∞ norm is insensitive to the number of cells.) 

Table 7-3. Error Ansatz models for the Noh1D problem and pressure field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 10-4 sec. 

eh = 0.29 + 139.51(∆h)1.14 0.0% 

Space-only analysis at 
all time steps 

eh = 2.08 + 1,642.34(∆h)2.34 3.9% 

Space-time analysis at 
all time steps 

eh = 5.20 + 3.86(∆h)0.05 – 0.39(∆t)-0.34 
+ 2.18(∆h)0.82(∆t)-0.38 

3.2% 

Space-time analysis at all time 
steps, with log10 scaling 

eh = 4.29 + 6.53(EH)-15.68 – 0.43(ET)-6.93 2.1% 

Table 7-4. Error Ansatz models for the Noh1D problem and density field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 10-4 sec. 

eh = 0.85 + 416.46(∆h)1.13 0.0% 

Space-only analysis at 
all time steps 

N/A N/A 

Space-time analysis at 
all time steps 

eh = 5.78 + 148.34(∆h)0.76 – 211.15(∆t)2.17 3.2% 

Space-time analysis at all time 
steps, with log10 scaling 

N/A N/A 

All regression coefficients (βk) shown in Tables 7-3 and 7-4 are expressed in engineering 
units, except in the case of log10 scaling. Log10 scaling converts the cell size ∆h and time step ∆t 
into variables EH and ET such that: 

HE10∆h −= ,    TE10∆t −=  (7-2)
Fitting the error values as a function of exponents (EH;ET) as opposed to the cell size and time 
step pair (∆h;∆t) tends to improve the goodness-of-fit because the non-linear relationships 
shown in equation (7-2) are eliminated and the values of variables EH and ET have the same 
order of magnitude, which may not be the case with variables ∆h and ∆t. It should, however, be 
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remembered that a positive exponent such as (∆h)p, where p ≥ 0, is converted into a negative 
exponent (EH)q, where q ≤ 0. An effect such as 6.53(EH)-15.68 shown in Table 7-3 is somewhat 
counter-intuitive but it does indicate that reducing the cell size tends to reduce the solution error. 

The goodness-of-fit of solution error models, that is, their ability to reproduce the observed 
error data, is assessed with the Mean Square Error (MSE) metric in Tables 7-3 and 7-4. The 
MSE is a root-mean square error between predictions and observations, scaled by the standard 
deviation of observed error data: 
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with the standard deviation (σe) and mean (ē) statistics are estimated as usually as: 
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and where êh denotes the prediction of the error Ansatz model; eh is the actual (observed) error; 
and NData is the number of observed errors, that is, the number of computer runs from which 
solution fields are extracted. A value equal to a few percents (less than, say, 5%) indicates a 
good-quality fit to the data. A value less than 1% indicates an exceptional goodness-of-fit. 

Table 7-3 lists four solution error models for the pressure field. Table 7-4 lists those of the 
density field. Four analyses are considered in each table. First, a space-only analysis is 
performed with the three computer runs that correspond to the finest time resolution ∆t = ∆tF. 
The second analysis is also restricted to the spatial effect (∆h)p but this time all computer runs 
are considered. Because a space-only solution error model has no mechanism by which to 
account for the time effect, the second analysis is expected to lead a less favorable goodness-
of-fit. The third analysis is a space-time model with variables (∆h;∆t) and the fourth analysis is a 
space-time model with variables (EH;ET). In all cases, MSE values remain small (less than 5%). 

It is observed that in both cases of pressure and density fields, the space-only solution error 
models find a spatial rate of convergence close to p = 1, which is expected in the presence of a 
discontinuous (shocked) solution. When space-time solution error models are fitted to the data, 
it is observed that time stepping effects are significant for the density field and no coupling 
between space and time are found. Although somewhat less significant for the pressure field, 
time stepping effects are found with negative exponents, which indicates that the pressure error 
tends to grow as ∆t  0. Comparing the two space-time analyses for the pressure field, that is, 
with and without log10 scaling, sheds light on the true nature of space-time coupling. When the 
error Ansatz model is developed as a function of variables (∆h;∆t), the coupling effect (∆h)r(∆t)s 
is found to be significant. However, its significance vanishes after transformation from variables 
(∆h;∆t) to variables (EH;ET). This seems to indicate that the space-time coupling is due to the 
non-linearity shown in equation (7-2) as much as it is a manifestation of the data. 

Because space-only solution error models feature a single effect (∆h)p, statistical screening 
becomes irrelevant. Space-only models are therefore best-fitted to the data using non-linear 
optimization. Results reported in this work are obtained with the Simplex algorithm implemented 
in MATLABTM. The cost function for optimization is either defined as the MSE metric of equation 
(7-3) or as the function (1 – e-MSE), whichever provides better convergence. The maximum 
number of optimization iterations is equal to 100 x NP where NP denotes the number of unknown 
parameters. For example, NP = 3 for unknowns (βo;β1;p) of the error model eh = βo + β1(∆h)p. 
Tolerances for convergence of the cost function and solution are set to 10-6. 
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Figure 7-4. Cost function and convergence rate values for the model eh = βo + β1(∆h)p. 

 
Figure 7-5. L-shaped curve for the optimization of the model eh = βo + β1(∆h)p. 
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Space-time solution error models are obtained with the Markov Chain Monte Carlo (MCMC) 
search described in Section 5, which provides not only a best model but also a list of posterior 
probabilities that indicate whether or not specific effects are important to predict the value of 
solution error. The settings are similar to those used in Section 6. The total number of MCMC 
iterations is set to 1,000 x NP with 100 iterations reserved for burn-in. Models visited during 
these first 100 burn-in iterations are disregarded to avoid producing posterior statistics that 
depend on the starting point. Prior probabilities are set to 25% for all main effects; 10% for 
interactions that involve an effect also selected as main effect; and 1% for linear interactions 
that do not involve effects selected as main effect. Posterior probabilities are not reported in 
Tables 7-3, 7-4 (and the following ones) because they are equal to 100%. Effects for which 
posterior probabilities are not significant are simply not included in the solution error models. An 
example is the space-time model shown in Table 7-4, eh = 5.78 + 148.34(∆h)0.76 – 211.15(∆t)2.17, 
where the coupling between space and time is not found significant. 

Numerical optimization to best-fit parameters (βo;β1;p) of space-only solution error models 
eh = βo + β1(∆h)p is sometimes problematic. Because the Simplex algorithm encounters difficulty 
fitting the curve βo + β1(∆h)p through the available data points, it tends to “stiffen” the solution by 
seeking higher-degree polynomials. This results in regression coefficients (βo;β1) that increase 
by two and sometimes three orders of magnitude. Likewise, the rate of convergence p increases 
to values that make no sense, up to 15 and beyond, while the overall MSE remains unchanged. 
An illustration for the Noh1D problem is provided in Figure 7-4 that shows the results, in terms 
of MSE and convergence rate values, of several numerical optimizations. Optimization is carried 
out by limiting the number of iterations to 10, then 20, then 30, etc. The final values of the MSE 
and solution (βo;β1;p) are recorded when the optimization solver stops at the specified number 
of iterations. Figure 7-4 illustrates that, beyond 60 iterations, letting the solver iterate does not 
really improve the MSE while the rate of convergence keeps increasing. 

The tendency to over-fit the solution error model can also be observed in Figure 7-5 that 
pictures the L-shaped curve corresponding to the optimization of the space-only solution error 
model eh = βo + β1(∆h)p for the Noh1D problem, density field. Such L-shaped curve is obtained 
by plotting on the horizontal axis the square of the difference (pOpt–po)2 between the optimized 
rate of convergence and its starting point initialized at po = 1 and plotting the MSE on the vertical 
axis. Common practice to avoid over-fitting is to observe the shape of the curve and select the 
solution at the corner of the “L”, that is, the solution that minimizes the MSE while not stiffening 
the model too much. Whenever over-fitting is encountered, this strategy is implemented and it 
results in selecting the solution provided at either 40 or 60 optimization iterations. 

Results for the Noh2D problem are summarized next. The Noh problem is solved in two 
dimensions with computational grids created in a Cartesian (X;Y) coordinate system. As before, 
the design of computer experiments is a three-level full-factorial array totaling 32 = 9 runs with 
cell sizes ∆h = (2.50.10-2 | 1.25.10-2 | 6.25.10-3) cm and time steps ∆t = (5.10-3 | 10-3 | 2.10-4) 
sec. The spatial discretization results in grids with 80-by-80 = 6,400 cells, 160-by-160 = 25,600 
cells, and 320-by-320 = 102,400 cells for the coarse, medium, and fine resolutions, respectively. 
The computational domain is [0; 2]-by-[0; 2] cm2. Results are reported at the final simulation 
time of 0.6 sec. The refinement ratios are RH = 2 in space and RT = 5 in time. 

Figure 7-6 illustrates three numerical solutions for the pressure fields obtained with settings 
(∆hC;∆tC), (∆hM;∆tM), and (∆hF;∆tF). Comparison with the exact solution in Figure 7-6 shows 
good qualitative agreement. Figures 7-7 and 7-8 picture two numerical solutions for the density 
fields obtained with the settings (∆hC;∆tM) and (∆hF;∆tF). 
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Figure 7-6. Analytical and numerical pressure fields of the Noh2D problem. 

 
Figure 7-7. Numerical density field of the Noh2D problem obtained with (∆hC;∆tM). 
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Figure 7-8. Numerical density field of the Noh2D problem obtained with (∆hF;∆tF). 

Table 7-5 lists the solution convergence error Ansatz models obtained for the pressure 
fields. As before, the Euclidean L2 norm is used to calculate the error between numerical and 
exact solutions over the entire computational domain, that is, 0 ≤ X ≤ 2 cm and 0 ≤ Y ≤ 2 cm. 

Table 7-5. Error Ansatz models for the Noh2D problem and pressure field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 2.10-4 sec. 

eh = 2.33 – 10.93(∆h)1.16 0.0% 

Space-only analysis at 
all time steps 

eh = 1.66 + 0.67(∆h)0.06 2.0% 

Space-time analysis at 
all time steps 

eh = 1.60 + 0.73(∆h)0.06 + 1.04(∆t)1.96 
+ 1.97(∆h)1.58(∆t)0.55 

2.0% 

Space-time analysis at all time 
steps, with log10 scaling 

eh = 1.96 + 0.13(EH)-0.65 1.0% 

Table 7-5 shows that space-only modeling based on the finest level of time refinement (∆t = 
∆tF) captures the first-order convergence of the pressure field in the presence of a discontinuity. 
Space-time modeling of the solution error seems to indicate that the time main effect and space-
time cross interaction are important. Note, however, that the solution error model is constructed 
with a cross interaction term (∆h)r(∆t)s where the exponents are r = 1.58 and s = 0.55 while the 
spatial discretization main effect (∆h)p is relatively weak due to an exponent of p = 0.06. It is 
somewhat suspect to find a strong cross interaction term while the main effect remains relatively 
weak. This suspicion is confirmed when the transform of variables (7-3) is implemented since 
the resulting solution error model finds a spatial main effect only. 
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7.2 Results Obtained With the Sedov Test Problem 
The Sedov blast wave problem models the motion of a blast wave in an ideal gas produced 

by a dense source of energy [7]. The ideal gas has zero temperature and pressure and uniform 
density. A point-blast energy source is placed at the origin (as a delta function), and the shock 
produced expands outward as a sphere. Conditions are chosen such that the shock wave is at a 
radius of R = 1 cm at time T = 1.0 sec. Reference [7] gives details of the problem setting and 
derivation of the analytical solution. 

The Sedov1D problem is solved in perfectly spherical coordinates with the blast wave 
expending outwards from the origin. The design of computer experiments is a three-level full-
factorial array totaling 32 = 9 runs with cell sizes ∆h = (5.00.10-3 | 3.33.10-3 | 2.22.10-3) cm and 
time steps ∆t = (25.10-6 | 5.10-6 | 10-6) sec. The spatial discretization results in grids with 200, 
300, and 450 cells for the coarse, medium, and fine resolutions, respectively. The size of the 
computational domain is [0; 1] cm. Results are reported at the final simulation time of 1 sec. The 
refinement ratios are RH = 1.5 in space and RT = 5 in time. Results shown are for the density 
and energy state variables. The solution convergence errors are calculated over the 
computational domain 0 ≤ X ≤ 1 cm with the L2 norm and scaling (1/NCells) that accounts for the 
number of cells. 

 
Figure 7-9. Analytical and numerical density fields of the Sedov1D problem. 

Figures 7-9 and 7-10 illustrate three numerical solutions for the density and energy fields 
obtained with settings (∆hC;∆tC), (∆hM;∆tM), and (∆hF;∆tF). Comparison with the exact solutions 
shows convergence. Agreement is overall good between the solutions provided by the most 
refined grid and analytical derivation, whether the solution is discontinuous (for the density) or 
smooth (for the energy). 
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Figure 7-10. Analytical and numerical energy fields of the Sedov1D problem. 

Table 7-6 lists the solution convergence error Ansatz models obtained for the density state 
variable in one dimension (Sedov1D). Table 7-7 lists the density solution error models for the 
Sedov2D problem, that is, the same problem solved in a two-dimensional domain. 

Table 7-6. Error Ansatz models for the Sedov1D problem and density field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 10-6 sec. 

eh = 0.20 – 15.17(∆h)1.24 0.4% 

Space-only analysis at 
all time steps 

eh = 0.19 + 0.14(∆h)6.85 0.4% 

Space-time analysis at 
all time steps 

eh = 0.19 + 1.01(∆h)1.02 + 1.08(∆t)1.22 
+ 1.12(∆h)1.07(∆t)1.11 

0.4% 

Space-time analysis at all time 
steps, with log10 scaling 

eh = 2.43 + 4.20(EH)-1.56 – 2.09(ET)-6.59 
– 6.61(EH)-0.76(ET)-0.01 

0.098% 

The Sedov2D results are obtained by solving the Euler equations of compressible gas 
dynamics for the Sedov setting in two dimensions with computational grids created in a 
Cartesian (X;Y) coordinate system. The design of computer experiments is a three-level full-
factorial array totaling 32 = 9 runs with cell sizes ∆h = (25.00.10-3 | 12.50.10-3 | 6.25.10-3) cm and 
time steps ∆t = (8.10-5 | 4.10-5 | 2.10-5) sec. The spatial discretization results in grids with 48-by-
48 = 2,304 cells, 96-by-96 = 9,216 cells, and 192-by-192 = 36,864 cells for the coarse, medium, 
and fine resolutions, respectively. The computational domain is [0; 1.2]-by-[0; 1.2] cm2. Results 
are reported at the final simulation time of 1 sec. The refinement ratios are RH = 2 in space and 
RT = 2 in time. 
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Table 7-7. Error Ansatz models for the Sedov2D problem and density field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 2.10-5 sec. 

eh = 0.90 – 212.67(∆h)2.22 0.0048% 

Space-only analysis at 
all time steps 

eh = 0.90 – 60.29(∆h)1.88 0.0062% 

Space-time analysis at 
all time steps 

eh = 0.93 + 5.27(∆h)2.35 – 6.21(∆t)1.71 
– 0.22(∆h)0.48(∆t)-0.06 

0.026% 

Space-time analysis at all time 
steps, with log10 scaling 

Log10 scaling does not improve the results significantly 
because the above model already fits the data very well. 

Results for the Sedov1D problem in Table 7-6 indicate first-order convergence in space and 
time, as expected in the presence of a shocked solution for the density field. When simulation 
results at all time settings (∆tC, ∆tM, and ∆tF) are used to perform a space-only convergence 
analysis, a suspicious rate of convergence equal to p = 6.85 is obtained. Rather than being a 
property of the numerical solver, this large value of the convergence rate is thought be a 
manifestation of polynomial optimization over-fitting. The variable transform from (∆h;∆t) to 
(EH;ET) indicates that the main effect (∆t)q of time discretization is significant to explain the 
observed convergence solution errors. 

Results for the Sedov2D problem in Table 7-7 tend to indicate second-order convergence in 
space and time. The space-time coupling term (∆h)r(∆t)s is found significant according to its 
posterior probability even though its contribution to the solution error value is small compared to 
the contributions of main effects (∆h)p and (∆t)q. All solution error models shown in Table 7-7 fit 
the available data very well, as indicated by MSE values significantly less than 1%. The result of 
second-order convergence in space and time is to be taken with caution because an erroneous 
definition of the boundary condition for the Sedov2D calculations is currently being investigated. 

7.3 Results Obtained With the Vortex Test Problem 
The vortex evolution problem solves in two dimensions the Euler equations of compressible 

gas dynamics where the mean flow initialized at density ρo = 1 gm-cm-3, pressure po = 1 dyne-
cm-2, and velocity Ux = Uy = 1 cm-sec-1 is perturbed by an isentropic vortex [17]. The 
perturbation is defined in terms of velocity δUx, δUy, and temperature δT. It is parameterized by 
a strength parameter ε whose value is selected to be ε = 5: 
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where R denotes the radius, R2 = x2 + y2. Reference [17] gives details of the vortex evolution 
problem setting and derivation of the analytical solution. The solution is continuous and the 
perturbation introduced to the mean flow (ε = 5) is strong enough that it excites the non-linearity 
of Euler equations. The perturbation is not strong enough to develop a shock. 

The Vortex2D problem is analyzed with a three-level full-factorial design of computer 
experiments totaling 32 = 9 runs with cell sizes ∆h = (25.00.10-2 | 8.33.10-2 | 2.77.10-2) cm and 
time steps ∆t = (2.10-2 | 10-2 | 5.10-3) sec. The spatial discretization results in grids with 40-by-40 
= 1,600 cells, 120-by-120 = 14,400 cells, and 360-by-360 = 129,600 cells for the coarse, 
medium, and fine resolutions, respectively. The size of the computational domain is [0; 10]-by-
[0; 10] cm2. The refinement ratios are RH = 3 in space and RT = 2 in time. Results shown are for 
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the density state variable at the final simulation time of 100 sec. The solution convergence 
errors are calculated over the computational domain 0 ≤ X ≤ 10 cm and 0 ≤ Y ≤ 10 cm with the 
L2 norm and scaling (1/NCells) that accounts for the number of cells. The exact same settings are 
used for the wave propagation problem, Wave2D, discussed in Section 7-4. 

 
Figure 7-11. Analytical and numerical density fields of the Vortex2D problem. 

Figure 7-11 illustrates three numerical solutions for the density state variable obtained with 
the settings (∆hC;∆tC), (∆hM;∆tM), and (∆hF;∆tF). Comparison with the exact solution seems to 
indicate convergence as ∆h  0 and ∆t  0. 

For this and all other test problems, the constant cell size and time step values are selected 
such that the CFL condition is satisfied. This involves running the code verification test problem 
with nominal settings, that is, with the recommended cell size and CFL-limited time steeping, 
and interrogating the RAGE output dumps to estimate the maximum value of the speed of 
sound ωSound. For all test problems analyzed, the maximum value of ωSound occurs early in the 
simulation as indicated by time step values ∆t that start at 10-5 to 10-4 sec., then, increase as the 
number of cycles grows, sometimes by two orders of magnitude. For the Vortex2D and Wave2D 
problems, the maximum speed of sound is estimated at ωSound = 1.55 cm-sec-1 and the run 
budget dictates to select settings of cell size and time step pairs (∆h;∆t) that closely satisfy the 
CFL condition expressed approximately as: 

( ) 1ωmax
∆h
∆tCFL Sound <⎟

⎠
⎞

⎜
⎝
⎛≈  (7-6)



FY05 ASC V&V Code Verification Project                                                        Non-linear Error Ansatz Models for Solution Verification 
 

 
Approved for unlimited public release on October 26, 2005                                                                     LA-UR-05-8228, Unclassified 

83

Table 7-8 lists the CFL numbers obtained for each one of the computer runs performed. 
Run number 3 defined at (∆hF;∆tC) violates the CFL condition because it combines the fine cell 
size to the coarse time resolution. Run 3 resulted in exiting the hydro-code RAGE with an error 
message. It was decided to perform the analysis based on this data set anyway from which the 
third run was disregarded. 

Table 7-8. CFL numbers estimated for the Vortex2D and Wave2D problems. 
Run 

Number 
Cell Size 
∆h (cm) 

Time Step 
∆t (sec.) 

ωMax = ∆h/∆t Captured 
by the Grid (cm-sec-1) 

CFL Number, 
Equation (7-6) 

Run 
Kept? 

1 25.00.10-2 2.10-2 12.50 0.12 Yes 
2 8.33.10-2 2.10-2 4.16 0.37 Yes 
3 2.77.10-2 2.10-2 1.38 1.12 No 
4 25.00.10-2 10-2 25.00 0.06 Yes 
5 8.33.10-2 10-2 8.33 0.18 Yes 
6 2.77.10-2 10-2 2.77 0.56 Yes 
7 25.00.10-2 5.10-3 50.00 0.03 Yes 
8 8.33.10-2 5.10-3 16.66 0.09 Yes 
9 2.77.10-2 5.10-3 5.55 0.28 Yes 

Eliminating the third run has little effect in terms of model fitting because 9 – 1 = 8 computer 
runs suffice to best-fit space-only models (3 unknowns) or space-time models (7 unknowns 
when the intercept βo is eliminated because βo is equal to the mean solution error, βo = ē). For 
effect screening, eliminating the third run deteriorates the design of computer experiments in an 
incomplete full-factorial, which potentially introduces aliasing. Aliasing means that the 
significance of low-order effects is compounded by the influence of higher-order effects. This is 
however not believed to be an issue for the Vortex2D and Wave2D problems because, first, the 
design is “almost” full-factorial (only a single point is missing) and, second, it is verified a 
posteriori that effect screening for both problems produces no abnormal result. 

Table 7-9. Error Ansatz models for the Vortex2D problem and density field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 5.10-3 sec. 

eh = 0.08 + 0.38(∆h)4.02 0.0% 

Space-only analysis at 
all time steps 

eh = 0.10 – 0.95(∆h)3.64 0.4% 

Space-time analysis at 
all time steps 

eh = –0.69 + 3.55(∆h)6.58 + 1.44(∆t)0.07 
– 1.25(∆h)0.17(∆t)0.26 

0.2% 

Space-time analysis at all time 
steps, with log10 scaling 

Log10 scaling does not improve the results significantly 
because the above model already fits the data very well. 

Table 7-9 lists the solution convergence error Ansatz models obtained for the density fields 
of the Vortex2D problem. Space-only models indicate a rate of convergence close to quadratic, 
even when all eight simulation runs are fed to the analysis. The main observation from space-
time modeling is to confirm that the effect of time step is not significant as indicated by the small 
values of exponents q = 0.07 and s = 0.26 for the main effect of time discretization (∆t)q and the 
cross interaction (∆h)r(∆t)s, respectively. 

7.4 Results Obtained With the Wave Test Problem 
The wave propagation problem, denoted as Wave2D, is similar to the previous Vortex2D 

problem with the exception that no mean flow perturbation is introduced in the initial condition. 
Because the perturbation parameter is set to ε = 0 in equation (7-5), the Euler equations reduce 
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to a linear wave equation about the density ρ, from which the exact solution can be written 
analytically. The Euler equations are nevertheless solved for with the hydro-code RAGE. A 
noticeable difference with the previous vortex evolution problem is that the Wave2D solution is 
strictly linear since the wave propagation equation is linear and no perturbation of the initial 
condition is considered. The Wave2D solution is smooth (continuous) and linear at all time steps 
and over the computational domain. 

The same grids as those defined for the Vortex2D problem are used, together with the 
same constant time steps. Table 7-8 lists the corresponding CFL conditions from which the third 
computer run is rejected because its grid and constant time step cannot propagate information 
faster than the maximum observed sound speed of ωSound = 1.55 cm-sec-1. The analysis mirrors 
the one performed for the Vortex2D problem with density solutions reported at the simulation 
time of 100 sec., solution convergence errors calculated over the square computational domain 
0 ≤ X ≤ 10 cm and 0 ≤ Y ≤ 10 cm, and L2 norms scaled to account for the number of cells of 
each grid. 

Figure 7-12 illustrates three numerical solutions for the density state variable obtained with 
the settings (∆hC;∆tC), (∆hM;∆tM), and (∆hF;∆tF). As before, comparison with the exact solution 
seems to indicate convergence as ∆h  0 and ∆t  0. 

Figure 7-12. Analytical and numerical density fields of the Wave2D problem. 

Table 7-10 summarizes the solution convergence error Ansatz models obtained for the 
density fields of the Wave2D problem. As before, space-only models indicate a quadratic rate of 
convergence, even when all eight simulation runs are fed to the analysis. Space-time modeling 
indicates quadratic convergence in space, quadratic (almost cubic) convergence in time, and 
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the presence of a space-time coupling term although this cross interaction effect is influential to 
a lesser extent. 

 
Figure 7-13. Forecasting of solution error with space-only and space-time models. 

Table 7-10. Error Ansatz models for the Wave2D problem and density field. 
Analysis 
Method 

Best Solution 
Error Model 

Mean Square 
Error (MSE) 

Space-only analysis at 
∆t = 5.10-3 sec. 

eh = 0.08 + 5.12(∆h)4.74 0.0% 

Space-only analysis at 
all time steps 

eh = 0.08 + 4.49(∆h)4.63 0.0% 

Space-time analysis at 
all time steps 

eh = 0.08 + 0.14(∆h)2.13 + 3.43(∆t)2.97 
+ 0.01(∆h)-0.63(∆t)1.30 

0.0% 

Space-time analysis at all time 
steps, with log10 scaling 

Log10 scaling does not improve the results significantly 
because the above model already fits the data very well. 

Figure 7-13 compares graphically the solution error values predicted by the space-only and 
space-time models of Table 7-10. The first space-only model, eh = 0.08 + 5.12(∆h)4.74, is used to 
generate the data shown. Because the space-only model cannot, by definition, account for ∆t, it 
is represented as a single curve in Figure 7-13. The space-time model, on the other hand, is 
evaluated at ∆t = 5.10-3 sec., ∆t = 10.10-3 sec., and ∆t = 20.10-3 sec., which produces three 
slightly different curves. The figure illustrates that predictions of solution convergence errors at 
settings (∆h;∆t) that have not been used to best-fit the error model can differ depending on the 
functional form of the model and its inclusion or not of time discretization. 
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One final observation is that the space-time coupling effects (∆h)r(∆t)s for this and other test 
problems (Noh1D, Vortex2D, Wave2D) exhibit exponents of opposite signs (r > 0 while s < 0 or 
the opposite combination r < 0 while s > 0). This may be an indication that the cell size-to-time 
step ratio (∆h/∆t) is an important explanatory variable. Although this was not done here, the 
analysis could be repeated to include this third variable in addition to cell size and time step in 
an attempt to improve the quality of fit to the data. Physically, the explanatory variable (∆h/∆t) 
makes sense since it represents the maximum speed at which a cell can propagate information, 
at least locally, to the neighboring cells, which may be a variable of importance in the presence 
of a discontinuity or strong gradient. 

7.5 Short Description of the FEAST Toolbox 
The results presented in this report have been obtained using a dedicated software 

package called FEAST (Fitting Error Ansatz in Space and Time). FEAST is a collection of 
MATLABTM functions currently specialized to the four code verification test problems. For a 
given test problem, FEAST provides a design of computer experiments (full factorial, two-level 
orthogonal array, Monte Carlo, or Latin Hypercube sampling); writes the corresponding input 
decks; and writes a macro-command to execute the individual runs on the QSC machine. Once 
the runs have been completed and transferred back from QSC, FEAST uploads the text dump 
files (obtained after post-processing the ASCII dump files of RAGE with AMHCTools [8]); 
extracts the density, energy, pressure, velocity, and temperature solution fields; computes the 
error norms; and performs first-order ANOVA, linear interaction ANOVA, deterministic model 
fitting, or statistical model fitting. 

About 5,000+ lines of codes have been written that can easily be extended to include other 
verification test problems, design of computer experiments, or analysis techniques. Figure 7-14 
illustrates some of the FEAST code written to drive the analysis. One of the future tasks will be 
to extend the current capabilities of the FEAST toolkit, for example, by integrating solvers to 
estimate point-wise solution convergence error Ansatz models [24], or, conversely, to work with 
computer scientists to transfer the capabilities of FEAST to a third-party ASC (or other) testing 
harness software. 
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Figure 7-14. Sample of FEAST instructions for driving an error Ansatz analysis. 
 

%...STEP 1: Define the code verification problem to analyze
[Definition] = feast_def(1,[],{Problem;TypeDOE;nSamples}); 
 
%...STEP 2: Define the design of computer experiments 
[Output] = feast_doe(Definition,Options); 
%...Update the problem definition structure 
[Definition] = feast_def(2,Definition,Output,Options); 
 
%...STEP 3: Create the input decks 
[Output] = feast_input(Definition,Options); 
%...Update the problem definition structure 
[Definition] = feast_def(3,Definition,Output,Options); 
 
%...STEP 4: Create the execution commands 
[Output] = feast_run(Definition,Options); 
%...Update the problem definition structure 
[Definition] = feast_def(4,Definition,Output,Options); 
 
%...STEP 5: Perform the analysis 
%*/*/* Transfer files and execute on QSC */*/* 
 
%...STEP 6: Upload results back in MATLAB memory 
[Output] = feast_upload(Definition,Options); 
%...Update the problem definition structure 
[Definition] = feast_def(6,Definition,Output,Options); 
 
%...STEP 7: Fit error Ansatz models 
[Output] = feast_fit(Definition,Options); 
%...Update the problem definition structure 
[Definition] = feast def(7,Definition,Output,Options);
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8. Conclusion 

Summary: The overall conclusion of the study is that including time 
discretization effects and space-time coupling terms may be critical to 
predict solution convergence error and quantify numerical uncertainty. 
Because this clearly depends on the code and physics being simulated, 
developing a general-purpose framework for the formulation of solution 
convergence error Ansatz models is necessary. One such approach is 
proposed that relies on the design of computer experiments, analysis-of-
variance, and statistical effect screening and model fitting. Directions for 
future research and development are identified.  

This report discusses work performed in support of the fiscal year 2005 Code Verification 
project of the Advanced Scientific Computing (ASC) program at Los Alamos National Laboratory 
to investigate the correctness of error Ansatz models for solution verification. It is proposed to 
develop error Ansatz models that include, if appropriate, time discretization effects and terms 
that accommodate space-time coupling effects. 

The overall conclusion, based on the code verification test problems investigated, is that the 
coupling between cell size and time step greatly matters to forecast numerical solution 
uncertainty. Another contribution of the study is to suggest a general-purpose procedure based 
on the design of computer experiments, analysis-of-variance, and statistical model fitting to 
formulate non-linear error Ansatz models for solution convergence. 

Advantages of this approach are that it can be: applied in a somewhat black-box mode, that 
is, independently of the code or verification test problem; automated to a great extent; and 
extended to include non-constant cell sizes (to handle adaptive mesh refinement), non-constant 
time steps (to handle stability-limited runs), and other parameters that control the discretization 
of partial differential equations. 

Limitations of the study are that it is based on: specific verification test problems for which 
the exact solutions of the continuous equations are known (the more difficult case of solution 
self-convergence is not addressed); a single Eulerian code developed under the Los Alamos 
Code Project “Crestone” (other codes are not considered); uniform grids (adaptively refined 
grids are not considered); and constant time stepping (simulations are not analyzed with 
stability-limited time steps like it is customary in computational physics). 

Directions identified for future research and development are listed below in no particular 
order: 

1) Extend the investigation to non-uniform meshes and non-uniform time stepping, such as 
those encountered in adaptive mesh refinement calculations with stability-limited time stepping. 
One issue to address is the characterization of the cell size and time step when they vary, 
potentially, from cell-to-cell and cycle-to-cycle. A likely roadblock, to be discussed with the code 
development team, is the ability to track the evolution and access the values of time steps and 
cell sizes for the entire grid and at each cycle of the simulation. 

2) Extend the investigation to other physics codes, whether Eulerian or Lagrangian, 
developed under the Los Alamos Code Projects “Crestone” and “Shavano”. Another interesting 
investigation would be to perform back-to-back comparisons of error Ansatz models for solution 
convergence between ASC and “legacy” physics codes. 
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3) Incorporate the FEAST software developed for Fitting Error Ansatz Models in Space and 
Time into an automated analysis and testing harness, for example, the Pinocchio project (G. 
Hrbek, Principal Investigator) or the AMHCTools software (J. Grove, Principal Investigator). 

4) Integrate the formulation of error Ansatz models to the case of point-wise estimation of 
solution convergence for code verification and/or solution self-convergence. In the case of 
solution self-convergence, one issue is to extend the space-only Richardson extrapolation to the 
case of space-time equations. 

5) Improve the statistical capabilities of the FEAST toolbox. They are currently limited to a 
few designs of computer experiments and main effect analysis-of-variance. The polynomial 
fitting functions are limited to quadratic polynomials up to four variables. These capabilities 
suffice to deal with uniform grids and forced (constant) time stepping. Handling adaptively 
refined grids and stability-limited time stepping will require extension of the polynomial functions 
to more than four variables to be able, for example, to study the effects on solution error of a 
minimum cell size, maximum cell size, minimum time step, maximum time step, and other 
variables of the discretization or control parameters of the numerical simulation. 

6) Extend the approach proposed to the challenging case of solution self-convergence 
where the exact solution of the continuous equations is unknown. The issue is that numerical 
solutions obtained from multiple grids are usually extrapolated to calculate a “reference” that 
estimates the unknown solution. Any extrapolation implicitly assumes the functional form of the 
error Ansatz equation (such as linear and function of cell size only), which strongly couples the 
calculation of a reference solution to the formulation of the error Ansatz model. 

7) Propagate uncertainty from other control parameters of the simulation, for example, 
discrete flags that define the numerical algorithms or continuous parameters that control the 
numerical dissipation, accuracy, stability, etc. This would take a step towards the quantification 
of total numerical uncertainty, whether it originates from lack of solution convergence or lack-of-
knowledge about control parameters of the code. The statistical analysis techniques proposed 
in the current study can provide the practical means by which numerical uncertainty is quantified 
for Verification and Validation (V&V). 

8) Investigate the diagnosis of solution self-convergence using higher-order statistical 
moments of the lack-of-fit between predictions of an error Ansatz equation and the observed 
errors. It might be possible, not only to develop novel approaches to assess self-convergence 
(of lack thereof), but also to derive statistically rigorous uncertainty bounds for the unknown 
solution of the continuous equations. 

9) Demonstrate the extent to which error Ansatz models can be used in a predictive mode. 
Having developed a single one or a family of error Ansatz models, apply it/them in a predictive 
mode to forecast the level of numerical solution uncertainty given simulation parameters such 
as cell size, time step, etc. Conversely, estimate the requirements in terms of mesh density, 
number of cycles, etc., such that the solution error is guaranteed not to exceed a given level. 
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