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Two-Dimensional Convergence Study for Problems with
Exact Solution: Uniform and Adaptive Grids

Shengtai Li, William J. Rider, and Mikhail J. Shashkov

Abstract
In this report, We have tested three examples in the convergence analysis of adaptive

mesh refinement (AMR) calculation for two different AMR implementations. Test
results shows that AMR may not achieve the convergence of equivalent finest uniform
grid. In some cases, numerical results with AMR are even worse than those without
AMR. AMR can even trigger instability for some problems.

The three examples have exact solutions so that we can calculate the numerical error
exactly. The two AMR implementations include a patch-based (AMR-MHD) and a cell-
based AMR (RAGE). Characteristic length scales (CLS) determines the convergence
behavior. A smaller CLS means better convergence. Below is a comparison in CLS
between two AMRs (∆avg=

√
Total Area/N , ∆xmin=minimal spacing)

AMR-MHD RAGE
Problem wave vortex Noh wave vortex Noh

refinement 22% 22.5% 6% 11% 20% 96%
L1-CLS ∆xmin ∆xmin < CLS � ∆xavg ∆xmin > ∆xavg � ∆xavg � ∆xavg

L2-CLS ∆xmin ∆xmin < CLS � ∆xavg ∆xmin > ∆xavg � ∆xavg ∆xmin

L∞-CLS ∆xmin ∆xmin < CLS � ∆xavg N/A > ∆xavg � ∆xavg N/A

The comparison, combined with other test results, reflects the ineffectiveness of RAGE
AMR for selected problems: (a) it has large initialization error in the first step; (b)
the refinement criteria do not work well; (c) results with AMR are worse than without
AMR for high-resolution grid; (d) AMR with more than 1-level refinement does not
work better than with only 1-level refinement.

Two issues occur in both AMRs: (1) AMR with locked time step has larger dis-
persion error than corresponding fine uniform grid. (2) AMR can trigger carbuncle
instability at shock front for cylindrical (r, z) coordinate near z-axes.

The overall error-cost performance of AMR calculations in RAGE is as follows
Problem Error 1002(1) 1002(2) 1002(3) 2002(1) 2002(2) 4002(1)

L1 t=1 × × × × × ×
wave L2 t=1 × × × × × ×

L∞ t=1
√ √ √ √ × ×

L1 t=10 × × × × × ×
wave L2 t=10

√ √ √ × × ×
L∞ t=10

√ √ √ √ × ×
L1 t=1

√ × × × × ×
vortex L2 t=1

√ × × × × ×
L∞ t=1

√ × × × × ×
L1 t=10

√ × × × × ×
vortex L2 t=10

√ × × × × ×
L∞ t=10

√ √ × √ × ×
L1 × × × × × ×

Noh L2 × × × × × ×
L∞ × × × × × ×

(
√

means better, × means worse, than the uniform grid; n2(m) denotes n× n base grid with m AMR levels.)
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1 Introduction

In this report, we describe a process of asymptotic convergence analysis for Eulerian, com-
pressible hydrodynamics simulations that use locally adaptive mesh refinement (AMR) grid.
This analysis compares the numerical errors of uniform grid and corresponding AMR grid
to find possible defect of AMR implementations, and provides numerical estimates of the
asymptotic convergence rate.

Convergence analysis of numerical solutions to partial differential equations (PDEs) is
typically performed on a uniform, fixed mesh ([10, 11, 12, 13]). Such regular meshes greatly
simplify both the method and implementation of the asymptotic convergence analysis. Pre-
vious report [15] extends the methodology to Lagrangian staggered grid hydrodynamics
algorithms that involve unstructured dynamically evolving meshes.

AMR calculation has been popular in the past twenty years for its capabilities to handle
problems with multiple length and time scales. AMR is straightforward in theory, which
locally adds cells to where they are needed. In this report, we focus ourselves on structured
AMR that has been used for Eulerian compressible hydrodynamics simulations. The struc-
ture AMR consists grids of different refinement levels. The refinement ratio between two
adjacent levels is constant. Since Berger [1] proposed her first AMR algorithm, many AMR
implementations and packages are available for research, such as CHOMBO, FLASH, DAGH,
OVERTURE, RAGE. However, the verification analysis for AMR is still in its infancy. The
reason is partially due to the complexity of AMR data structure and its detachment from
the numerical algorithm. It is assumed in AMR community that AMR should achieve the
same accuracy in refinement region as the corresponding fine uniform grid. However, we will
see this assumption may not be true in many cases.

The structure AMR has at least two distinguish implementations: patch-based and cell-
based. The patch-based AMR differs from the cell-based in its data structure and man-
agement. Clustering, which groups the refined cells into logically rectangular grids (called
patch), can transform the cell-based AMR into patch-based. Most of AMR implementations
are patch-based, including our in-house version AMR-MHD [7]. The RAGE code, however,
is cell-based. It is outside of the scope of this report to provide a detailed explanation on
the difference of the two AMR implementations; see more references for details.

Our test cases consists of three model problems. All of them have exact solutions. The
first two problems are smooth and have periodic boundary conditions so that they can be run
for a long time. The first problem is a simple linear wave propagation problem. The second
one has the same initial conditions and exact solutions in density field but the pressure and
velocities are not constant. The third problem has a discontinuity developed and propagated.

In all of the three examples we solve the compressible Euler equations of gas dynamics
in 2-D:

qt + f(q)x + g(q)y = 0 (1)

where

q = (ρ, ρu, ρv, E)T ,

f(q) = (ρu, ρu2 + p, ρuv, u(E + p))T ,

g(q) = (ρv, ρuv, ρv2 + p, v(E + p))T .
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Here ρ is density, (u, v) is the velocity, E is the total energy, p is the pressure, and

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (2)

where γ is a constant related to the ideal gas.
RAGE uses a different hydro solver (see [8]) from AMR-MHD. As an independent com-

parison and check for the code implementation, we have also implemented the hydro solver
of AMR-MHD into RAGE as an alternative solver. This hydro solver is a general flux-based
hydro-solver and is often called MUSCL-Hancock scheme. It first predicts the space-time
centered values at the cell-interface by Hancock predictor, and then uses a Riemann solver
to evaluate the flux at the interface.

All of our computation for RAGE code uses version rage20041126.032. Gisler reported
convergence studies using version rage20040220.003 in [9]. We are informed that there is no
big change in hydro-algorithm and AMR structure between these two versions.

The outline of this report is as follows. We first describe a general background for
convergence analysis and AMR in Section 2. Then we test the three examples with uniform
and AMR grid.

2 Background

2.1 General Error Ansatz

The general global error ansatz for combined space and time error analysis proposed in [14]
is

ξ∗ = ξ + A(∆x̃)p + B(∆t̃)q + C(∆x̃)r(∆t̃)s + H.O.T,

where A,B,C are constant convergence coefficients, p, q, r, s are the convergence rate. In
this report, we restrict our attention only to the case of spatial convergence, i.e., we solve
the standard discretization error model

||ξ − ξ∗|| = A(∆x̃)p, (3)

where ξ and ξ∗ are the computed and exact solution vectors. The norm || · || can be L1, L2,
and L∞, defined as

||f ||1 =
1

V

∫
Ω
|f(x)|dx

||f ||2 =

√
1

V

∫
Ω
|f(x)|2dx

||f ||∞ = max
x∈Ω

|f(x)|

where V =
∫
Ω dx is the total volume of the cells. In discrete space, these quantities can be

approximated as

V =
∑
k

∆Vk
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||f ||1 =
1

V

∑
k

|f(xk)|∆Vk

||f ||2 =

√√√√ 1

V

∑
k

|f(xk)|2∆Vk

|f ||∞ = max
k
|f(xk)|

The characteristic length scale, ∆x̃, is a constant for uniform grid. For non-uniform grid
such as AMR, we attempt to find a ∆x̃ that has similar convergence behavior as the uniform
grid. Note that the smaller the ∆x̃, the better convergence we achieve.

2.2 AMR algorithm

In this subsection, we describe AMR data structure and management in brief.

2.2.1 AMR-MHD

We used the Berger-Colella [2] AMR strategy in AMR-MHD to handle those regions that
need fine grid resolution. The detail of our implementation for general time-dependent PDEs
was described in [3, 4].

Given a grid, we first flag those cells that require refinement and then cluster them into
several rectangular grids, called patch. For each newly-generated patch, we interpolate the
solutions from the coarse grid to the new grid. If the old mesh already has some refinement
that overlaps with the new mesh, the solution should be copied from the old fine mesh to
the new one. The whole regridding procedure from the old mesh solution to the new mesh
solution is called prolongation. If the initial conditions are defined analytically, the initial
conditions on the new grid are also defined analytically. Each patch can be treated as a
single grid. Further refinement can be done recursively until no refinement is needed or the
finest refinement level is reached.

During time integration, the coarse grid advances first, and then the fine grid. Boundary
conditions of the fine grid are defined by either external boundary conditions, or adjacent
sibling patches, or interpolations from the coarse parent grid. After advancing the fine grid,
we transfer the more accurate fine grid solutions to the parent coarse grid. This procedure is
called restriction. Restriction could cause a loss of conservation at interface between a fine
and a coarse grid. Berger and Colella [2] proposed a flux correction step to secure that the
consistent fluxes are used at the fine-coarse interface.

How to flag the cells has crucial impact on numerical errors. Several approaches are
available in the literatures. We have implemented some of them in AMR-MHD. For the test
problems in this report, we used a simple but effective approach that has been described in
[3, 4]. Take a 2-D example, we use an error monitor function defined as

SPCMON(i, j) := max
k

SPCTOL(k)( |∆x2uk
xx(i, j)|

+ |∆y2uk
yy(i, j)|) (4)

where

SPCTOL(k) :=
SPCWGT(k)

UMAX(k) · TOLS
.
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is defined for each grid cell for the kth solution component uk(i, j). The weighting factor
0 < SPCWGT ≤ 1 is a user specified parameter to indicate the relative importance of a PDE
component. The parameters UMAX denotes the approximate maximum absolute value for
each component, and TOLS is the spatial error tolerance. The second order derivative is
approximated by a three point finite-difference method. For Euler equations, we use only
the density profile in (4), i.e., SPCWGT(1)=1 and SPCWDT(2:4)=0. We initial a level
refinement if there is a point where SPCMON(i, j) > 1.0, and then all grid points with
SPCMON(i, j) > 0.5 are flagged.

For a dimensional-split algorithm, the time stepsize is usually determined by the maxi-
mum CFL number in each direction,

CFL = δt ·max

{ |vx|+ cs

δx
,
|vy|+ cs

δy
,
|vz|+ cs

δz

}
, (5)

For most of schemes, CFL should be no greater than 1. Note that the time stepsize is usually
determined by the finest grid where the local spacing is smaller. Berger and Colella used
a local time step method to improve the efficiency. This local time step method allows the
fine grid takes smaller time step than the coarse grid before they reach the same time level.

Two concerns lead to the local time step for AMR: efficiency and accuracy. First, the
local time step approach can save the computational effort associated with advancing the
solution on the coarser levels with unnecessarily fine time steps. Second, a larger number
of fine time steps to advance the solution on a coarser level will introduce more numerical
diffusion and dispersion by accumulated effects. The accuracy concern is not issue in many
applications. This is because the most interesting regions are covered by the fine levels and
those that do not require refinement contain not very much structure. Another reason is
that the accuracy may increase as the time step gets smaller. The latter reason is true only
for some specific discretization and smooth problems.

Numerical simulations shows that the local time step can greatly improve the compu-
tational efficiency for one-dimensional applications. However, we obtain only slightly im-
provement in efficiency for two and three dimensional problems. We have also found that
the local time stepping had difficulties in implicit time integration or high order method of
lines (MOL) approach, because the local time stepping requires the boundary values (at the
coarse-fine interface) that must be interpolated in both time and space from the coarse grid.
Furthermore, the local time step also require extra memory allocated to store the temporary
copies of the solution for time interpolation. The local time step approach is also difficult to
achieve the load balance for large-scale parallel computation, because the time integration
must be done sequentially for different levels. That is, the coarse level must be advanced first
to prepare the boundary conditions for the fine levels. Due to this reason, most of available
parallel AMR packages (e.g., ASC RAGE and FLASH code) use locked time step to advance
the fine and coarse levels simultaneously.

The locked time step approach advances all of the grid points with the same time step,
and hence the stepsize will be determined by the finest grid cells. The coarse grid has to use
this small time step even though it can take a large time step locally. In this report, we will
study how the locked time step impacts the convergence analysis by using the AMR-MHD
package.
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A natural consequence of the “patch-based” AMR, such as AMR-MHD, is the use of
“ghost” cells to link a block to its neighboring blocks of both higher and lower resolution.
The advantage of the patch-based AMR is that each block is a regular Eulerian grid and
legacy code for a single grid can be reused easily. The disadvantages is that any curved
contour of the mesh is resolved with extraneous cells, which may increase the computational
work.

2.2.2 RAGE AMR

The RAGE hydro-code uses a cell-based AMR package, called continuous AMR (CAMR).
It has been documented in detail in RAGE manuals. CMAR refines or enlarges each cell of
the AMR mesh at each time step, depending on the local activity in that cell. Advantages
of using the CAMR code include more efficient use of the computational cells. The challenge
of CAMR is to create a robust data structure and import the existing code that developed
for a single grid. It has only the locked time step method. The time stepsize in RAGE is
controlled by two parameters: TSTAB and CSTAB. TSTAB is defined as an upper bound
for

TSTAB ≥ δt ·
{ |vx|

δx
+
|vy|
δy

+
|vz|
δz

}
, (6)

and CSTAB is defined as an upper bound for

CSTAB ≥ δt ·max

{ |vx|+ cs

δx
,
|vy|+ cs

δy
,
|vz|+ cs

δz

}
, (7)

where cs denotes the sound speed, vx, vy and vz are velocities in each direction. CSTAB is
actually an upper bound for the CFL number. TSTAB is an auxiliary time step stability
factor. It limits the time step according to velocity constraints. The manual describes the
time step is limited by

max[vx/δx, vy/δy, vz/δz] · δt ≤ TSTAB. (8)

However, the code implementation (release version 20050331.000) uses (6) instead of (8).
These two are quite different for multi-dimensional problem. The default values of CSTAB
and TSTAB are 0.9 and 0.2. Note that a TSTAB of 0.2 may correspond to a CFL number
of 0.1 in many cases.

3 Linear Wave Propagation Problem

We first test a simple problem where velocity and pressure remains constant during the time
evolution. The Euler equations can be reduced to a linear wave equation with respect to
density ρ. However, we still solve the full Euler equations for the solutions. As pointed out
in [14], one caveat to this problem is that it tests only the linear fields in the governing Euler
equations.
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The problem is subject to the following initial conditions:

ρt=0 =

(
1− (γ − 1)ε2

8γπ2
e1−r2

)1/(γ−1)

(u, v, p)t=0 = (1, 1, 1),

where r2 = x2 + y2 and ε = 5. The density is chosen so that only a small region needs
refinement if AMR is used. The computational domain is defined as [−5, 5]× [−5, 5], where
periodic boundary conditions are adopted in both directions. The exact solutions for Euler
equations with the above initial and boundary conditions is just a linear advection of the
density profile with the constant velocity (1,1).

3.1 Results of AMR-MHD

We first use the package AMR-MHD and solve the problem with four different uniform
grids: 40× 40, 80× 80, 160× 160, and 320× 320. The CFL number is kept around constant
during the time integration. To study the impact of CFL number on accuracy of numerical
solutions, we have tested two CFL numbers in this example:CFL=0.9 or CFL=0.45. Fig. 1
shows the errors in L1, L2, and L∞ norm for different uniform grids. The L1 and L2 error
indicates that the solutions reach the asymptotic range after 80× 80 resolution.

Fig. 2 shows the impact of CFL number on numerical errors. Note that the solutions
with a smaller CFL number are more accurate for the low resolutions, and less accurate for
the high resolutions. The CFL number has more impact on the L∞ error than on the L1

and L2 error.
To test the accuracy of AMR methods, we used three base uniform grids: 40×40, 80×80,

and 160×160. The error tolerance is TOLS=0.002, by which we catches as much as possible
the large error region for 80× 80 base grid. We had used TOLS=0.001, which generates the
same refined region as TOLS=0.002 for 80× 80 base grid in the first step. The refinement
ratio between different levels in AMR is two. The overall CFL number is kept around 0.9.
Fig. 3 shows the numerical errors for the AMR results as well as the uniform grid result
with different CFL numbers. It is easy to see that for the base grids 40 × 40 and 80 × 80,
the AMR results with either local time step method or locked time step are almost identical
to those obtained with the finest resolutions. In the case of base grid 160× 160, the AMR
achieves the same accuracy as the finest grid for the L∞ error and less accuracy for the L1

and L2 errors. This is because the refinement region for the high resolution base grid is much
smaller than for the low resolution base grid due to a fixed TOLS. Note that the AMR with
the locked time step method achieves almost the same accuracy as with the local time step
method.

Fig. 4 shows the convergence results of the AMR method at different times with respect
to (w.r.t.) different length scales:

• ∆xmin, defined as the spacing of the finest level grid;

• ∆xmax, defined as the spacing of the base grid (the coarsest level);

• ∆xavg =
√

Total area/Nc, defined as the average spacing of the whole AMR grid,
where Nc is the total number of cells;
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Figure 1: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
different times for different uniform grids. AMR-MHD is used.
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Figure 2: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
different times for different CFL numbers. AMR-MHD is used.
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Figure 3: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
different times for different CFL numbers. AMR-MHD is used
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• ∆xmean =
∑

∆xi/Nc, defined as the mean spacing of the whole AMR grid.

All of the four characteristic length scales (CLS) have been used in the convergence analysis of
Lagrangian dynamic moving grid in [15]. The results in Fig. 4 indicates that the convergence
length scale (∆x̃) in Eq. 3 for the AMR method is the minimum spacing, ∆xmin, i.e., the
finest resolution that has been used. This is more obvious for the results of the low resolutions
and for error norm L∞. Therefore, we can say that the AMR works well for this problem
just as expected.

For reference and comparison, Fig. 5 shows the density plots at different times.

3.2 Results of RAGE

For RAGE package we solved the problem with four different uniform grids: 100 × 100,
200× 200, 400× 400, and 800× 800. The default values of CSTAB (0.9) and TSTAB (0.2)
are used. Since we use periodic boundary conditions, the solution returns to the initial one
after every 10 seconds. Fig. 6 shows the results at t=10, 50 and 100 for 800×800 grid, where
the density profile is preserved very well after such a long integration. We expect AMR in
RAGE works as expected as for AMR-MHD package. However, the plots in Figure 7, which
show the results of 100×100 base grid with different refinement levels, indicate the AMR
results get corrupted even at time t = 10. To see it clearly, we plot the grid refinement and
error distribution in Fig. 8 at different times.

The L1, L2 and L∞ errors and convergence orders are calculated for all grids. Figures
9 and 10 show the results for uniform grid. We also calculated the maximum CFL number
used for each grid, which is roughly 0.267. In term of L1 norm, the RAGE algorithm achieves
the 2nd order accuracy for uniform grid.

To study the effect of CFL number on the accuracy of the numerical solutions, we also
tested the case of TSTAB=0.5, which corresponds to CFL=0.63. The results are shown in
Figure 11. For some unknown reasons, RAGE does not allow a TSTAB larger than 0.5,
which can cause the instability. For comparison, we also showed the results of the MUSCL-
Hancock scheme in RAGE. Note that for MUSCL-Hancock, the CFL number can be as large
as one. The results of AMR-MHD (see Figure 3) shows that for this problem, the smaller
the CFL number, the more accurate the solutions are. However, Figure 11 shows a different
story: the smaller the CFL number, the less accurate the solutions are. This is true even
with the same hydro solver MUSCL-Hancock. The reason is not clear to us by now.

To test the accuracy and convergence of the AMR method, we used three base uniform
grids: 100 × 100, 200 × 200, and 400 × 400. The refinement ratio between different levels
in AMR is taken as two. The default values of CSTAB and TSTAB are used in time step
control. Figure 12 shows the results for 100×100 base grid with different refinement levels
compared with the same resolution uniform grids. It is clear that AMR cannot achieve the
same accuracy as the uniform grid with the same resolution. This is in contrast to the
AMR-MHD results in previous subsection. We also noticed that the results for the three-
level refinement are even worse than those with just one-level or two-level refinement. For
L∞ norm, we noticed in Figure 12 that the one-level refinement achieves almost the same
accuracy as the uniform grid with the same resolution. However, more refinement levels
generate even worse results at later times.
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Figure 4: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
different times. AMR-MHD is used
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Figure 5: The density plot at y = 0 for wave propagation problem at t = 10 (left) and
t = 100(right). AMR-MHD is used.

Figure 6: Density plot at t =10(left),50(middle), and 100(right) for 800× 800 uniform grid.
Linear wave problem was solved with RAGE package.
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Figure 7: Density plot of 100×100 with AMR of different refinement levels at t = 100 for
linear wave problem. Left: 1-level refinement, middle: 2-level refinement, right: 3-level
refinement. RAGE is used.

Figure 13 shows the results of different base grids with only one refinement level, com-
pared with the uniform grid with the same resolution. In term of L∞ error, only the 100×100
base grid with AMR achieves almost the same accuracy as the same resolution uniform grid.
In terms of L1 and L2 errors, the AMR results are even worse than the uniform results
without refinement at early times. Figure 14 shows the errors at early times.

To understand length scale of the AMR grid, we plot the average spacing for different
refinements and different base grid in Figure 15. It shows that the 100×100 grid with three-
level refinement sometimes has larger average spacing than with two-level refinement. This
should not have happened if the AMR performs properly, since we assume in AMR the more
refinement, the more points we should have. This partially explains why the three-level
refinement is worse than the results of two-level refinement in Figures 12 and 13.

To study the error-cost performance of AMR, we plot the error convergence behavior at
different times using the average spacing. Note that the computational cost is proportional
to the number of the cells, which determines the average spacing. Figure 16 shows the
performance of AMR calculation versus that of the uniform grid calculation. The point
above the uniform grid convergence line means that AMR has more cells but larger error
than the uniform grid. Considering that AMR activities and data management add at least
15% overhead to the total computation, we summarize on the performance of the AMR
calculation in Table 1.

4 Vortex evolution

The next example has almost the same initial and boundary conditions as described in
previous section. The mean flow is ρ = 1, p = 1, and (u, v) = (1, 1). We add, to the
mean flow, an isentropic vortex (perturbations in (u, v) and the temperature T = p/ρ, no
perturbation in the entropy S = p/ργ):

(δu, δv) =
ε

2π
e0.5(1−r2)(−y, x),
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Figure 8: Refinement and error distribution with 2-level refinement for linear wave problem.
Left: t=10; middle: t=50,, right: t=100. RAGE is used in the top two lines with base grid
100x100. AMR-MHD is used in the bottom two lines with base grid 100x100.
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Figure 9: Numerical errors of different grids for linear wave problem. RAGE is used.
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Figure 10: Convergence order at different times for linear wave problem. RAGE is used.
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Figure 11: Numerical errors for different CFL numbers and different algorithms for linear
wave problem. 100×100 grid is used. The bottom plot has the same legend as the top one.
RAGE is used.

Table 1: Error-cost performance of AMR computation for linear wave problem, where
√

means it is better than uniform grid and × means it is worse than uniform grid. RAGE is
used.

1002AMR(1) 1002AMR(2) 1002AMR(3) 2002AMR(1) 2002AMR(2) 4002AMR(1)
L1 t=1 × × × × × ×
L2 t=1 × × × × × ×
L∞ t=1

√ √ √ √ × ×
L1 t=10 × × × × × ×
L2 t=10

√ √ √ × × ×
L∞ t=10

√ √ √ √ × ×
L1 t=100

√ √ × × × ×
L2 t=100

√ √ × √ × ×
L∞ t=100

√ √ × √ × ×
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Figure 12: Numerical errors of 100×100 grid with different refinement levels for linear wave
problem. RAGE is used.
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Figure 13: Numerical errors of different base grids with only one refinement level for linear
wave problem.
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Figure 14: Numerical L1 error of AMR grids at early time, compared with the same resolution
uniform grid, for Linear wave problem. RAGE is used.
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Figure 16: The error convergence behavior of AMR grid, compared with those of uniform
grid. The right plot has considered 15% overhead of AMR while the left has not. The point
above the uniform grid convergence line indicates that AMR has more cells but larger error
than the uniform grid. RAGE is used.
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δT = − (γ − 1)ε2

8γπ2e1−r2 ,

δS = 0,

where r2 = x2 + y2, and the vortex strength ε = 5. The computational domain is taken as
[−5, 5]× [−5, 5], extended periodically in both directions.

It can be verified easily that the initial density profile is the same the first example, and
the exact solution of the Euler equations with the above initial and boundary conditions is
just the passive convection of the vortex with the mean velocity (1,1). Therefore, we expect
the density behaves exactly as the first examples.

The solution is very smooth. No shocks are considered at this stage. We use the same
four different uniform grids as the previous example to solve the problem. The problem
set-up and tests, except the initial conditions, are the same as the previous example.

4.1 Results of AMR-MHD

Fig. 17 shows the convergence order at different times for different error indicators and
different CFL numbers. It is clear that the asymptotic range is achieved from the resolution
80x80 grid. Fig. 18 shows the numerical errors for the four uniform grids. Fig. 19 shows the
asymptotic convergence for at specific times. Three times (t = 10, 40, 80) are chosen. The
numerical results show that the CFL number has dramatical effect on the accuracy of the
solutions. The smaller the CFL number, the less accurate the solutions are.

Figs.20 to 22 shows the numerical errors of the AMR grid with local time step and with
locked time step, compared with the results of the uniform grid. From Fig. 20, we can see
that the AMR with locked time step may yield solutions that are worse than those of no
refinement at all. These figures also show that the error accumulating rate with time seems
determined by the CFL number in the coarse-level grid after a short period of time. This
may be a bad news for many AMR users that the solution with local mesh refinement may
be worse than that of without AMR after a period of time.

Fig. 23 and 24 show the numerical convergence behavior for the AMR results compared
with those obtained by the uniform grid. We also study the characteristic length scale for
the AMR grid. At time t = 10, Fig. 23 shows that the results for the AMR with minimum
spacing is closer to the corresponding uniform grid results. The deviation at fine resolution
(at 320 × 320) is because the refinement region is become smaller and smaller as the grid
becomes finer and finer. However, at time t = 40 and t = 80, the results for the AMR with
average (or mean) spacing is closer to the corresponding uniform grid results. Fig. 24 shows
the results for the locked time step method. There is no improvement changing from the
40x40 to 80x80 grid.

We also attempted to calculate the convergence order based on two AMR grid with the
same refinement level but different base grid. Fig. 26 shows the results.

In Fig. 27, we study the characteristic length-scale for the AMR method at t = 10. We
assume the error model for the AMR grid is the same as that of the uniform grid. If we
know the coefficient A and rate p from the uniform convergence analysis, we can define the
best characteristic length scale for an AMR grid by inverse interpolation:

∆x̃ = exp((log ||ξ − ξ∗|| − A)/p).
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Figure 17: Convergence order at different times for different error indicators and different
CFL numbers

In Fig. 27, we derived that the corresponding length-scale for the AMR grid at t = 10 is
0.069 if the L1 error is considered, whereas the average space is 0.0972.

Compared the results of the first example (linear wave propagation) and the second
one, we can see how the nonlinearity in Euler equations impacts the numerical error and
convergence order. For these two examples, the density profile is exactly the same and
is advected with the same velocity. However, the CFL number has more impact on the
numerical errors on the second one than on the first one. The reason why we are so focus on
the CFL number is that the AMR with locked time step method has different CFL numbers
in different refinement levels. We had thought that the small CFL number in the coarse
level would not have much impact on the accuracy overall because the large error region has
been covered with the fine level that has a large CFL number. This is no longer true for the
second examples.

Compared the numerical results in Figs. 5 and 25, we can see that the later one has large
dispersion error at t = 100, even if the amplitude error is smaller than the first example.
The large phase error may be due to the small CFL number used in the coarse level.
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Figure 18: Numerical errors (L1, L2, and L∞) for the vortex evolution example at different
times for different uniform grids. AMR-MHD is used.
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Figure 19: Numerical errors (L1, L2, and L∞) for the vortex evolution example at different
times for different CFL numbers. AMR-MHD is used.
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Figure 20: Numerical errors (L1) for the vortex evolution example at different times for
different CFL numbers. AMR-MHD is used.
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Figure 21: Numerical errors (L2) for the vortex evolution example at different times for
different CFL numbers. AMR-MHD is used.
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Figure 22: Numerical errors (L∞) for the vortex evolution example at different times for
different CFL numbers. AMR-MHD is used.
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Figure 23: Numerical convergence behaviors for the vortex evolution problem for different
error indicators (L1, L2, and L∞) at different times. AMR with local time step method is
used. AMR-MHD is used.
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Figure 24: Numerical errors (L1, L2, and L∞) for the vortex evolution problem at different
times. AMR with locked time step method is used. AMR-MHD is used
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Figure 25: The density plot at y = 0 for vortex evolution problem at t = 10 (left) and
t = 100(right). AMR-MHD is used.
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Figure 26: Convergence order for AMR grid with different resolutions at different times.
AMR-MHD is used.
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Figure 27: Length scale analysis for the AMR grid with 2-level refinement at t = 10. AMR-
MHD is used.

4.2 Results of RAGE

Figure 28 shows the errors in different norms and different times. We can see the oscillations
occur at later times for the fine grid. We think it is because the error in the vortex region has
been propagated to other flat regions. We actually observed that the whole profile depicted
in Figure 5 goes up and down at later times in the results of the fine grid. One interesting
thing is that we did not observe such kind of feature in AMR-MHD results by the time
t = 100.

We also calculated the convergence order at different times for different error norms. The
results are shown in Figure 29. We observed some negative orders in the plot. The results
at t = 100 was corrupted by the oscillations which may cause the negative order. The L∞
error between 400× 400 and 800× 800 looks bizarre, which is shown in Figure 30. The error
distribution for both grids at t = 1 is shown in Figure 31. Overall the convergence rate is
not very good for high resolution uniform grid.

To study the effect of CFL number on the accuracy of the numerical solutions, we also
tested the case of TSTAB=0.5. The results are shown in Figure 32. For comparison, we
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Figure 28: Numerical errors of different grids for vortex propagation problem. RAGE is
used.
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Figure 29: Convergence order at different times for vortex propagation problem. RAGE is
used.
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Figure 30: Numerical errors of different grids for vortex propagation problem. RAGE is
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Figure 31: Error distribution of different grids at t = 1 for vortex propagation problem.
RAGE is used.
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included the results of the MUSCL-Hancock scheme with different TSTABs. To show that
TSTAB cannot exceed 0.5 for RAGE hydro, we test the case of TSTAB=1.0, the result is
shown in Figure 33. Figure 32 tells us that the difference between different CFL numbers
is not as large as in AMR-MHD case. This is mainly because both CFL numbers are far
smaller than one. There is another parameter in RAGE that may affect the accuracy of the
numerical method. It is “hydrobet”, which controls the artificial viscosity. The default value
in RAGE is hydrobet=0.25. We tested the case of hydrobet=0.0. The result is also shown
in Figure 33. Note that the artificial viscosity has less impact than the CFL number.

To test the accuracy and convergence of the AMR method, we used three base uniform
grids: 100 × 100, 200 × 200, and 400 × 400. The refinement ratio between different levels
in AMR is taken as two. The default values of CSTAB and TSTAB are used in time step
control. Figure 34 shows the results for 100×100 base grid with different refinement levels
compared with the same resolution uniform grids. The oscillations occur at earlier time than
for the uniform grid with the same resolution. If we consider the solution before oscillations,
the result of the three-level refinement AMR is worse than that of the two-level refinement
AMR. All of the AMR results are worse than that of 200×200 uniform grid in term of L1

and L2 errors. In term of L∞ error, only the two-level refinement is slightly better than the
200×200 uniform grid at early times.

Figure 35 shows the effect of CFL number on AMR process. It shows that the larger
the CFL number, the smaller the L1 error. Since the refinement region varies with the time
stepsize, we also plot how the L1 error divided by the average spacing changed with time and
CFL number. The results are also shown in Figure 35. Another interesting thing related to
the AMR refinement criteria in RAGE is that the refinement region increases a lot with the
increase of the time stepsize. Figure 36 shows the average spacing and CFL number change
for different CFL numbers and different schemes.

Figure 37 shows the results of different base grids with only one refinement level, com-
pared with the uniform grids with the same resolution. As observed in the previous exam-
ple, the 400× 400 with 1-level refinement is worse than 400× 400 without refinement. The
200× 200 with 1-level refinement is only a slightly better than 200× 200 without refinement
at early times. The errors for early times are shown in Figure 38.

To understand length scale of the AMR grid, we plot the average volume for different
refinements and different base grids in Figure 39. The refinement region is much larger than
the previous example, although they have the same density profile. Figure 40 shows the
refinement region and error distribution for 100×100 grid with 2-level refinement.

To study the error-cost performance of AMR, we plot the error convergence behavior at
different times using the average spacing. The results are shown in Figure 41. Table 2 shows
the summary on the performance of the AMR results.

Compared with the results of the first example (linear wave propagation), the error
accumulation in time and convergence order at later times is quite different. Comparing the
average volume in Figure 39 with that in 15 shows that AMR behaviors quite differently
from the results of AMR-MHD. In AMR-MHD, the refinement is controlled by the curvature
in density profile. Therefore, both examples generate almost the same size of the average
volume. However, for RAGE code, the refinement region for vortex propagation problem is
much larger than that for linear wave problem. It indicates that the refinement criteria in
RAGE are quite different from those in AMR-MHD package.
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Figure 32: Numerical errors for different CFL numbers and different algorithms, 100×100
grid is used. RAGE is used.
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Figure 34: Numerical errors for different refinement levels for vortex propagation problem.
RAGE is used.
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Figure 37: Numerical errors for different base grid with only one refinement level for vortex
propagation problem. RAGE is used.
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Figure 38: Numerical L1 error at early times for AMR, compared with the same resolution
uniform grid for vortex propagation problem. RAGE is used.
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Figure 39: Average spacing of different grids with refinement for vortex propagation problem.
RAGE is used.

Table 2: Error-cost performance of AMR computation for vortex propagation problem, where√
means it is better than uniform grid and × means it is worse than uniform grid. RAGE

is used.

1002AMR(1) 1002AMR(2) 1002AMR(3) 2002AMR(1) 2002AMR(2) 4002AMR(1)
L1 t=1

√ × × × × ×
L2 t=1

√ × × × × ×
L∞ t=1

√ × × × × ×
L1 t=10

√ × × × × ×
L2 t=10

√ × × × × ×
L∞ t=10

√ √ × √ × ×
L1 t=100 × × × √ × ×
L2 t=100 × × × √ × ×
L∞ t=100 × × × × × ×
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Figure 40: Refinement and error distribution with 2-level refinement for vortex problem.
Left: t=10; middle: t=50,, right: t=100. RAGE is used in the top two lines with base grid
100x100. AMR-MHD is used in the bottom two lines with base grid 100x100.
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Figure 41: The error convergence behavior of AMR grid, compared with those of uniform
grid. The right plot has considered 15% overhead of AMR while the left has not. The point
above the uniform grid convergence line indicates that AMR has more cells but larger error
than the uniform grid. RAGE is used to solve the vortex problem.
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The AMR of RAGE also performs badly in the first step. Figure 42 shows different base
grids with 1-level refinement compared with the same resolution uniform grid. The error
jumps very high for the AMR calculations in the first step. Initially, we thought it might
be because we used a cell-point value at midpoint of the cell in the initial conditions as the
cell-average value. We recalculated the initial condition by integral over the whole cell. It
does not improve the results. The comparison is shown in Figure 43. We should point out
that the initial starting error is not unique to this problem. We got similar results in our
linear wave problem.

5 Noh’s Problem

In this section, we present the test results for Noh’s problem. Gisler [9] reported the con-
vergence studies on Noh’s 3D problem solved on a (r, z) 2D cylindrical grid. He reached
a conclusion that the convergence is not achieved on the adaptive grids. Even at a single
level of refinement. there is noticeable deterioration in the solution when compared with a
uniform grid at the same equivalent resolution. At third and fourth level of the refinement
of 100×100 grid, a low-density bubble appears. Standard convergence analysis indicates the
solution is diverging with increasing resolution.

5.1 Noh’s 2D problem solved in Cartesian grid

We first test Noh’s 2D problem solved on a 2-D Cartesian grid. It has an exact solution
which is an infinite strength circularly symmetric shock reflecting from the origin. Behind
the shock (i.e., inside the circle) the density is 16, the velocity is 0 and the pressure is 16/3.
The shock speed is 1/3 and ahead of the shock, that is for

√
x2 + y2 > t/3, the density is

(1 + t/
√

x2 + y2) while the velocity and pressure remain the same as initially, i.e. velocity is
directed toward the origin and pressure is zero.

5.1.1 Results of AMR-MHD

As reported in [5], many numerical schemes failed to solve this problem. We use four different
uniform grids: 50×50, 100×100, 200×200, and 400×400. We first test it with a dimensional
splitting scheme. For the AMR algorithm, we use a error tolerance TOLS=0.02.

Since this problem has a strong shock, the global convergence is no more than the first
order. Fig. 44 shows the result of AMR with one-level refinement. The base grid is 100×100.
Due to the dimensional splitting, the solution is not fully symmetric along the diagonal line.

Figs 45 and 46 show that the result of the uniform grid with resolution 200×200 sometimes
is worse than that of the uniform grid with resolution 100× 100. It is not clear to us why
this happens. We think it might be due to the split scheme or the CFL number is too large.
We recalculated the solution with unsplit scheme. We also tried a small CFL number for
the split scheme. In both cases, the result for 200× 200 grid is more accurate than that of
100× 100 grid.

Fig. 45 also shows that the L2 and L∞ norm is not good for this problems to study the
convergence behavior. This is because the error near the shock front dominates the total
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Figure 42: Numerical errors of AMR at the beginning of the time integration for vortex
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error and we cannot obtain even the first order global convergence. We think it might be
true that the L1 error norm should be used in the convergence analysis for all the problems
that contain discontinuities.

Fig. 46 shows the high CFL number produces more accurate results except for the
200×200 case. However, the difference between the two results is small, compared with that
for the vortex propagation problem.
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Figure 44: The density color and contour plot with refinement for Noh’s 2D problem at
t = 1.2. 20 contours between 2 and 16 are used. AMR-MHD is used.

Fig. 47 shows the numerical error of the AMR results, compared with the uniform grid
results. We can see that for the base grid 200 × 200 and 50 × 50, the error of the AMR
results is almost the same as that of the finest grid results. We also noticed that the local
time step and locked time step give the same level of numerical errors.

Fig. 48 shows the numerical convergence behavior of AMR with one-level refinement.
We can see that the results for AMR with minimum spacing as the characteristic length
scale is almost identical to that of the uniform grid, except for the special 200× 200 case.

5.1.2 Results of RAGE

RAGE does not allow direct implementation of the Dirichlet boundary conditions. Gisler
[9] uses a much larger domain than actually used to ensure that the reflection from the
boundary will not reach the interested region. We set up the problem domain differently
from [9]. We defined the simulation domain as [0,1.2]×[0,1.2], where only [0,1]×[0,1] is the
region of interest. The extra regions, [0,1.2]×[1,1.2] and [1,1.2]×[0,1], are defined as freeze
regions. Numerical tests show that it does not matter how big the freeze region is. The
values in freeze regions are restored to the exact solution after every time step by a routine
in module “module test hydro”. We modified that routine for the purpose of this example.
After these modifications, the reflection from the boundary can be neglected.

We use four different uniform grids: 100 × 100, 200 × 200, 400 × 400, and 800 × 800.
The freeze regions are also discretized into the same kind of grid. Therefore, the grids we
actually use in simulation are 120× 120, 240× 240, 480× 480, and 960× 960. As Gisler [9],
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Figure 45: Numerical errors (L1, L2, and L∞) for the Noh’s problem at different times for
different uniform grids. AMR-MHD is used.
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Figure 46: Numerical errors (L1, L2, and L∞) for the Noh’s problem at different times for
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0 1 2

10
−2

10
−1

L 1 er
ro

r

200x200 base grid

cfl≈0.5
cfl≈0.25
AMR(2),local step
AMR(2)
finer grid

0 1 2

10
−2

10
−1

100x100 base grid

time
0 1 2

10
−2

10
−1

50x50 base grid

Figure 47: Numerical errors (L1) of the AMR results compared with the uniform grid results
for the Noh’s problem at different base grid. AMR-MHD is used.

LA-UR-05-7985 Page 49



10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

t=0.32

L 1 e
rro

r
uniform grid
AMR with maximum ∆ x
AMR with minimum ∆ x
AMR with average ∆ x
AMR with mean ∆ x

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

t=0.96

∆ x
10

−3
10

−2
10

−1
10

−3

10
−2

10
−1

t=1.60

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

t=0.32

L 1 e
rro

r

uniform grid
AMR with maximum ∆ x
AMR with minimum ∆ x
AMR with average ∆ x
AMR with mean ∆ x

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

t=0.96

∆ x
10

−3
10

−2
10

−1
10

−3

10
−2

10
−1

t=1.60
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we split the whole domain into several bands. The bands, numbered 1 through 8 from the
innermost radial band outward, are chosen in such a way as to bracket the shock (in band
4) and to have roughly similar numbers of the cells. The last band (8) is defined differently
from [9]. It includes the rest of interested domain ([0,1.0]×[0.1.0]).

Figure 49 shows the convergence order for uniform grid at different region bands. It
is clear that the second order accuracy is achieved in regions outside of shock (pre-shock).
Even though the region 8 is larger and close to the boundaries, the second order accuracy is
still achieved, which demonstrates that our boundary freeze set-up works. In regions inside
of the shock (post-shock), the convergence results are not so good. We even get negative
order in some regions.
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Figure 49: Convergence order of different regions for Noh2d Problem. RAGE is used.

Figure 50 shows the result of L1 error for different regions and different grids. It shows
the RAGE algorithm achieves the 2nd order accuracy in pre-shock bands for uniform grid.

Figure 51 shows the results of L1 error for 100×100 grid with different refinement levels.
For the pre-shock regions, it shows that except the band5 with 1-level refinement, the AMR
results are not convergence. It indeed diverges, which is in good agreement with the results
of Gisler [9]. For post-shock regions, The AMR is slightly better in band1 and band2 than
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Figure 50: Numerical errors of different grids for Noh2d problem. RAGE is used.
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the uniform grid without refinement. Compared with the results of Gisler [9], our three-level
refinement results are better. No density bubble appears in the either third or fourth level.
The difference may indicate that the 2-D and 3-D Noh problem is quite different in numerical
simulation.

Figure 52 shows the results of L1 error and convergence behavior for different region
bands for the same resolution grids with different refinement levels. It consists of two sets of
grids: 100× 100 with 3-level refinement, 200× 200 with 2-level refinement, 400× 400 with
1-level refinement, and 800× 800 uniform grid; 100× 100 with 2-level refinement, 200× 200
with 1-level refinement, and 400 × 400 uniform grid. It shows the more refinement levels,
the larger the error.

Figures 53 and 54 show the results of L1 and L2 error respectively for the whole time
history. The results of L2 norm shows that at least at early times, the AMR achieves almost
the same accuracy as the uniform grid with the finest resolution. This is in good agreement
with the results of AMR-MHD. To see that more clearly, we split the whole time history into
three stages, which is shown in Figure 55. It shows that at early time, the error in L2 norm
is in the same level for both the AMR and uniform grid, Then in the second stage, the AMR
results of 4002 begin to deviate from the uniform grid, and the other two still maintain the
same accuracy level. At the last stage, only the AMR results of the 1002 grid maintain the
same accuracy level, and the other two deviate from the uniform grid results. We remark
that the consistency of AMR and uniform grid results may be due to the fact that almost
everywhere is refined by RAGE refinement algorithm for this problem.

Figure 56 shows the average cell-volume for different refinements and different base grids.
It indicates the AMR refines almost everywhere after a short period of time. This is quite
different from the results of AMR-MHD, where only a small region (6%) along the shock
front gets refined. Gisler [9] found the same results using the RAGE code. Consider the
overhead of AMR processing, the AMR of RAGE is not efficient for this problem.

To study the error-cost performance of AMR, we plot the error convergence behavior at
different times using the average spacing. The results are shown in Figure 57. Table 3 shows
the summary on the performance of the AMR results for Noh2d problem.

Table 3: Error-cost performance of AMR computation for Noh2d problem, where
√

means
it is better than uniform grid and × means it is worse than uniform grid. RAGE is used.

1002AMR(1) 1002AMR(2) 1002AMR(3) 2002AMR(1) 2002AMR(2) 4002AMR(1)
L1 t=0.2 × × × × × ×
L2 t=0.2 × × × × × ×
L∞ t=0.2 × × × × × ×
L1 t=0.4 × × × × × ×
L2 t=0.4 × × × × × ×
L∞ t=0.4 × × × × × ×
L1 t=0.6 × × × × × ×
L2 t=0.6 × × × × × ×
L∞ t=0.6 × × × × × ×
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Figure 51: Numerical errors of 100×100 grid with different refinement levels for Noh2d
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for Noh2d problem. RAGE is used.
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Figure 53: Numerical errors of AMR for Noh2d problem. RAGE is used.
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Figure 54: Numerical errors of AMR for Noh2d problem. RAGE is used.
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Figure 55: Numerical errors of AMR for Noh2d problem. RAGE is used.
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Figure 56: Average cell volume of different grids with refinement for Noh2d problem. RAGE
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Figure 57: The error convergence behavior for different base grids and different refinement
levels for Noh2d problem. RAGE is used.
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5.2 Noh 3D problem solved in (r,z) cylindrical grid

For comparison with Gisler’s results [9], we also solved the Noh 3D problem in (r,z) cylin-
drical grid. The grid selection and set-up is the same as Noh 2D example. We used the
freeze regions to handle the reflection boundary conditions. The freeze regions not only can
reduce the number of cells, it also eliminate the effect of the reflection from the boundaries.
Figure 58 shows the difference in L1 error between our set-up and Gisler’s set-up.
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Figure 58: L1 error in different treatment of the boundary conditions for Noh3d problem.
RAGE is used.

Although our initial grid set-up is different from Gisler [9], we obtained almost the same
convergence results for uniform and AMR simulations. Figure 59 shows the convergence
results of L1 error for the uniform grid. Figure 60 shows the convergence of AMR with
different refinement levels for 100×100 base grid. It shows that AMR is not converged at
all. Compared our convergence results with those in Gisler [9], it seems that our convergence
is better than the results in [9]. We think the reason is that in [9] all of the errors are
calculated based on 400× 400 HDF output from the Rage, while we calculated the error for
each original cell.

As reported in Gisler [9], the three-level refinement of 100×100 grid has a surprising and
catastrophic anomaly on the axis, which turns out to be a low density bubble straddling
the shock. It did not happen for the Noh2d examples. It also did not happen for the same
resolution refinement with different base grids. The results and error distribution is shown
in Figures 61 and 62. It is also worth noting that the anomaly also occurs for the other base
grids (e.g. 50×50 and 200×200) with 3-level refinement.

Figure 63 shows the overall L1 and L2 error in time history for grid with only 1-level
refinement. As in Noh2d example, in term of the L2 error, the AMR achieves almost the
same accuracy as the finest uniform grids at early time. This is probably because the error
is dominated in post-shock region.

Figure 64 shows the results of the average cell-volume for different AMR grid. Compared
with Figure 56, it takes even shorter time for the AMR to refine almost everywhere. To
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Figure 61: Density plot for different refinement of the same resolutions for Noh3d problem.
RAGE is used.

Figure 62: Error distribution for different refinement of the same resolutions for Noh3d
problem. RAGE is used.
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Figure 63: L1 and L2 errors in time history for Noh3d problem. RAGE is used.
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show where the refinement happens, we plot the refinement at t = 0.6 for 100×100 grid with
3-level refinement in Figure 65.

5.3 Study of the carbuncle phenomenon

As suggested in [9], the anomaly behavior for 3-level refinement is probably related to car-
buncle phenomenon. In this section, we re-investigate this problem with the AMR package
(AMR-MHD). We tested it with base grid 50× 50. As for RAGE code, a low density bubble
(see Figure 66) straddles the shock near the Z-axes. Gisler pointed out the problem must
arises during de-refinement. To test this, we fixed the refinement near the Z-axes during
the simulation in AMR-MHD. The refinement region [0,0.1]×[0,0.3] is fixed all the time for
all refinement levels. There is no refinement or de-refinement in this fixed region during
the simulation. Figure 66 shows the carbuncle anomaly still occurs. This indicates that the
reason may not be due to the de-refinement during the simulation.

If AMR works normally, the AMR that refines everywhere should be identical to the
corresponding uniform grid results. This has been verified with our AMR-MHD package,
since we can force AMR to refine everywhere. The next question we try to answer is why
the carbuncle anomaly occurs only near the Z-axes. We have forced a refinement band
[0,0.1]×[0,1] along Z-axes, and found a surprising result. The carbuncle anomaly disappears
(see Figure 67). However, a refraction wave appears in the forced refinement band outside
shock. This can be vividly seen from the contour plot in Figure 67. The fluctuation is
due to the refraction at the coarse-fine interface, because there is no such thing if we refine
everywhere. We also observed that the more refinement level, the stronger the fluctuation.
This fluctuation can trigger the carbuncle phenomenon for many Riemann solver (Quirk
1994).

Quirk pointed out the the carbuncle phenomenon can be suppressed by a carbuncle free
Riemann solver. We tested it with the one-state HLLE Riemann solver and the results are
shown in Figure 68. We also tested the adaptive Riemann solver as suggested in Quirk [16]:
in shock region the HLLE Riemann solver is used, otherwise, the Roe’s Riemann solver is
used. We have used two different shock detection: one is based on pressure and the other is
based on the strong compression. For both approaches, we obtained almost the same results
as with the one-state HLLE solver. The results are shown in Fig. 69. However we still
observed some high overshot near the intersection of shock and r = 0.

We also tried to vary the size of the forced refinement region near r = 0 regions. We first
change the size in Z-direction. We have seen one of the results when z = 0.3 in Figure 66.
Figure 70 shows the other variations (z = 0.6 and z = 0.8).

We also vary the size of the forced refinement by changing the length in r-direction.
Figure 71 shows the results when r = 0.05 and r = 0.01. We can see that r = 0.05 result is
better than that of r = 0.01.

One research issue related to this problem is that why the refraction at the coarse-fine
interface for this problem is so strong near the Z-axes and can be neglected in other regions
or for other problems. Is there any method to detect this? We will address these issues in
the future research.
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Figure 64: Average cell volume of different grids with refinement for Noh3d problem. RAGE
is used.

Figure 65: AMR Refinement at t = 0.6 for 100×100 grid with 3-level refinement. Refinement
levels: 1st level(blue), 2nd level(light blue), 3rd level(yellow), 4th level(red). RAGE is used.
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Figure 66: “Carbuncle phenomenon” for 3-level AMR results of Noh3d problem solved by
AMR-MHD package. Left: AMR(3); Right: AMR(3) with fixed refinement near r = 0.
AMR-MHD is used.
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Figure 67: Carbuncle disappears for 3-level AMR results of Noh3d problem solved by AMR-
MHD package for fixed refinement along r = 0. Instead a refraction wave appears in the
forced refinement band. AMR-MHD is used.

LA-UR-05-7985 Page 66



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

Z

Figure 68: Carbuncle disappears for HLLE Riemann solver. AMR-MHD is used.
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Figure 69: Carbuncle disappears for adaptive Riemann solver. AMR-MHD is used.
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Figure 70: Carbuncle anomaly changes with the forced refinement. AMR-MHD is used.
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Figure 71: Carbuncle anomaly changes with the forced refinement. AMR-MHD is used.
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6 Conclusions

In this report, we have considered three 2-D simulations of smooth and discontinuous prob-
lems for convergence analysis of AMR calculations. Two different AMR packages are used
and compared: the patch-based AMR-MHD and the cell-based RAGE code. Since they
use different hydro algorithms as their basic solver, the comparison cannot tell which AMR
package is better. The data shown in this report can be taken only as a reference, NOT as
evidence to compare these two different AMR packages.

For AMR-MHD, the results shows that AMR works as expected for the linear wave and
Noh 2D problem. It achieves the accuracy of finest resolutions. This is especially true for
L∞ error norm. However for the vortex problem, the AMR results with locked time step are
worse than those of uniform grid without refinement at later stage of the time integration.

We remark that the error tolerance TOLS does have impact on the convergence behavior
of AMR, especially for the locked time step method. On one hand, if we refine almost
everywhere as TOLS→ 0, then both the local time step and locked time step achieves the
same accuracy as the finest uniform grid results. On the other hand, if we refine only a few
cells as TOLS→ ∞, then both the local time step and locked time step achieves only the
coarse grid accuracy with different CFL numbers. For the later case, the locked time step
may be worse than the uniform grid results because it corresponds to the coarse uniform
grid results with a smaller CFL number. If there is no refinement as TOLS→∞, both time
stepping method will have the same results.

We are interested in the range of TOLS where the local time step is much better than
the locked time step, and also the area of large error is covered by the refined grid. A crucial
issue needed to be answered is that why the small error in the coarse region could trigger
large error in refined region. The phase (dispersion) error may play an important factor. We
will continue our research on this topic.

AMR has another problem when applied to (r, z) cylindrical coordinate. It can trigger
the carbuncle instability along the z-axes if the solution has a strong shock wave. Numerical
results show the fluctuation that generates at the coarse-fine interface may be amplified by
more refinement levels and then trigger the carbuncle anomaly at the shock front. One
research issue is where the fluctuation comes from and how to suppress and/or eliminate it.

The numerical results of RAGE package reveal some defects with the current AMR
implementation. Two outstanding issues are the AMR initialization and AMR refinement
criteria. We will address these issues in the future research.

Acknowledgements
This work was performed by Los Alamos National Laboratory, which is operated by the

University of California for the U.S. Department of Energy under contract W-7405-ENG-36.
The authors thank many individuals for their generous time and effort towards this effort
include Jerry S. Brock, James R. Kamm, John W. Grove, Edward D. Dendy, Billy J. Archer,
and Robert B. Lowrie.

LA-UR-05-7985 Page 70



References

[1] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential
equations, J. Comput. Phys. 53 (1984), 484-512.

[2] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics,
J. Comput. Phys. 82 (1989), 64-84.

[3] J.M. Hyman, and S. Li, Interactive and dynamic control of adaptive mesh refinement
with nested hierarchical grids, Los Alamos National Laboratory Report (1998).

[4] J. M. Hyman and S. Li, Solution Adapted Nested Grid Refinement for 2-D PDEs, Los
Alamos National Lab. Report, LA-UR-98-5463 (1998).

[5] R. Liska and B. Wendroff, Comparison of several difference schemes on 1d and 2d
test problems for the Euler equations. Technical Report LA-UR-01-6225, Los Alamos
National Lab, 2001.

[6] Shengtai Li, Spatial Convergence Analysis for a 2-D Adaptive Mesh Refinement Code.
Technical Report LA-UR-05-3078, Los Alamos National Lab, 2005.

[7] S. Li and H. Li, A Modern Code for Solving Magneto-hydrodynamic or Hydrodynamic
Equations, Technical Report LA-UR-03-8925, Los Alamos National Lab, 2003.

[8] M. Clover, The “new hydro” coding in RAGE, 2002, SAIC report.

[9] Galen Gisler, Two-dimensional convergence study of the Noh and Sedov problems with
RAGE: Uniform an Adaptive grids, Technical Report LA-UR-05-xxxx, Los Alamos
National Lab, 2005.

[10] J. R. Kamm and W. J. Rider, 2-D convergence analysis of the RAGE hydro-code.
Technical Report LA-UR-98-3972, Los Alamos National Lab, 1998.

[11] J. R. Kamm and W. J. Rider, Verification analysis of the direct Eulerian 2-D RAGE
hydrodynamics algorithm, Technical Report LA-UR-99-5234, Los Alamos National Lab,
2000.

[12] J. R. Kamm and W. J. Rider, Spatial convergence analysis of 1-D RAGE on the spheri-
cally symmetric Noh Problem, Technical Report LA-UR-00-xxxx, Los Alamos National
Lab, 2000.

[13] J. R. Kamm and W. J. Rider, Consistent metric for code verification, Technical Report
LA-UR-02-3794, Los Alamos National Lab, 2002.

[14] J. R. Kamm, W. J. Rider and J. S. Brock, Combined space and time convergence
analysis of a compressible flow algorithm, AIAA-2003-4241, 2003.

[15] J. R. Kamm, J. S. Brock, C. L. Rousculp, and W. J. Rider, Verification of an ASCI
SHAVANO project hydrodynamics algorithm, Technical Report LA-UR-03-6999, Los
Alamos National Lab, 2003.

LA-UR-05-7985 Page 71



[16] J. J. Quirk, A contribution to the great Riemann solver debate, Int. J. Num. Meth.
Fluids, 18 (1994), 555-574.

LA-UR-05-7985 Page 72


	LA-UR-05-7985
	Two-Dimensional Convergence Study for Problems with Exact Solution: Uniform and Adaptive Grids
	Abstract
	1 Introduction
	2 Background
	2.1 General Error Ansatz
	2.2 AMR algorithm

	3 Linear Wave Propagation Problem
	3.1 Results of AMR-MHD
	3.2 Results of RAGE

	4 Vortex evolution
	4.1 Results of AMR-MHD
	4.2 Results of RAGE

	5 Noh’s Problem
	5.1 Noh’s 2D problem solved in Cartesian grid
	5.2 Noh 3D problem solved in (r,z) cylindrical grid
	5.3 Study of the carbuncle phenomenon

	6 Conclusions
	References
	List of Figures
	Figure 1: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
	Figure 2: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
	Figure 3: Numerical errors (L1, L2, and L∞) for the linear wa
	Figure 4: Numerical errors (L1, L2, and L∞) for the linear wave propagation example at
	Figure 5: The density plot at y = 0 for wave propagation problem at t = 10 (left) and
	Figure 6: Density plot at t =10(left),50(middle), and 100(right) for 800 × 800 uniform grid.
	Figure 7: Density plot of 100×100 with AMR of different refinement levels at t = 100 for
	Figure 8: Refinement and error distribution with 2-level refinement for linear wave problem.
	Figure 9: Numerical errors of different grids for linear wave problem. RAGE is used.
	Figure 10: Convergence order at different times for linear wave problem. RAGE is used.
	Figure 11: Numerical errors for different CFL numbers and different algorithms for linear
	Figure 12: Numerical errors of 100×100 grid with different refinement levels for linear wave
	Figure 13: Numerical errors of different base grids with only one refinement level for linear
	Figure 14: Numerical L1 error of AMR grids at early time, compared with the same resolution
	Figure 15: Average cell-volume of different grids with refinement for linear wave problem.
	Figure 16: The error convergence behavior of AMR grid, compared with those of uniform
	Figure 17: Convergence order at different times for different error indicators and different
	Figure 18: Numerical errors (L1, L2, and L∞) for the vortex evolution example at different
	Figure 19: Numerical errors (L1, L2, and L∞) for the vortex evolution example at different
	Figure 20: Numerical errors (L1) for the vortex evolution example at different times for
	Figure 21: Numerical errors (L2) for the vortex evolution example at different times for
	Figure 22: Numerical errors (L∞) for the vortex evolution example at different times for
	Figure 23: Numerical convergence behaviors for the vortex evolution problem for different∞) at different times. AMR with local time step method is
	Figure 24: Numerical errors (L1, L2, and L∞) for the vortex evolution problem at different
	Figure 25: The density plot at y = 0 for vortex evolution problem at t = 10 (left) and
	Figure 26: Convergence order for AMR grid with different resolutions at different times.
	Figure 27: Length scale analysis for the AMR grid with 2-level refinement at t = 10. AMRMHD
	Figure 28: Numerical errors of different grids for vortex propagation problem. RAGE is
	Figure 29: Convergence order at different times for vortex propagation problem. RAGE is
	Figure 30: Numerical errors of different grids for vortex propagation problem. RAGE is
	Figure 31: Error distribution of different grids at t = 1 for vortex propagation problem.
	Figure 32: Numerical errors for different CFL numbers and different algorithms, 100×100
	Figure 33: Numerical for a large TSTAB and different artificial viscosity. RAGE is used.
	Figure 34: Numerical errors for different refinement levels for vortex propagation problem.
	Figure 35: Numerical error for 100×100 with 1-level refinement grid for vortex propagation
	Figure 36: How refinement region changes with CFL number and time for vortex propagation
	Figure 37: Numerical errors for different base grid with only one refinement level for vortex
	Figure 38: Numerical L1 error at early times for AMR, compared with the same resolution
	Figure 39: Average spacing of different grids with refinement for vortex propagation problem.
	Figure 40: Refinement and error distribution with 2-level refinement for vortex problem.
	Figure 41: The error convergence behavior of AMR grid, compared with those of uniform
	Figure 42: Numerical errors of AMR at the beginning of the time integration for vortex
	Figure 43: Numerical errors of different initial condition calculations for vortex propagation
	Figure 44: The density color and contour plot with refinement for Noh’s 2D problem at
	Figure 45: Numerical errors (L1, L2, and L∞) for the Noh’s problem at different times for
	Figure 46: Numerical errors (L1, L2, and L∞) for the Noh’s problem at different times for
	Figure 47: Numerical errors (L1) of the AMR results compared with the uniform grid results
	Figure 48: Numerical errors (L1) for the Noh’s problem at different times. The top one is
	Figure 49: Convergence order of different regions for Noh2d Problem. RAGE is used.
	Figure 50: Numerical errors of different grids for Noh2d problem. RAGE is used.
	Figure 51: Numerical errors of 100×100 grid with different refinement levels for Noh2d
	Figure 52: Numerical errors of grids with the same resolution and different refinement levels
	Figure 53: Numerical errors of AMR for Noh2d problem. RAGE is used.
	Figure 54: Numerical errors of AMR for Noh2d problem. RAGE is used.
	Figure 55: Numerical errors of AMR for Noh2d problem. RAGE is used.
	Figure 56: Average cell volume of different grids with refinement for Noh2d problem. RAGE
	Figure 57: The error convergence behavior for different base grids and different refinement
	Figure 58: L1 error in different treatment of the boundary conditions for Noh3d problem.
	Figure 59: L1 error convergence for uniform grid for Noh3d problem.
	Figure 60: L1 error convergence for AMR of 100×100 grid for Noh3d problem. RAGE is
	Figure 61: Density plot for different refinement of the same resolutions for Noh3d problem.
	Figure 62: Error distribution for different refinement of the same resolutions for Noh3d
	Figure 63: L1 and L2 errors in time history for Noh3d problem. RAGE is used.
	Figure 64: Average cell volume of different grids with refinement for Noh3d problem. RAGE
	Figure 65: AMR Refinement at t = 0.6 for 100×100 grid with 3-level refinement. Refinement
	Figure 66: “Carbuncle phenomenon” for 3-level AMR results of Noh3d problem solved by
	Figure 67: Carbuncle disappears for 3-level AMR results of Noh3d problem solved by AMRMHD
	Figure 68: Carbuncle disappears for HLLE Riemann solver. AMR-MHD is used.
	Figure 69: Carbuncle disappears for adaptive Riemann solver. AMR-MHD is used.
	Figure 70: Carbuncle anomaly changes with the forced refinement. AMR-MHD is used.
	Figure 71: Carbuncle anomaly changes with the forced refinement. AMR-MHD is used.

	List of Tables
	Table 1: Error-cost performance of AMR computation for linear wave problem, where √
	Table 2: Error-cost performance of AMR computation for vortex propagation problem, where √ means it is better than uniform grid and × means it is worse than uniform grid. RAGE
	Table 3: Error-cost performance of AMR computation for Noh2d problem, where √ means



