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Abstract - All engineered systems will deteriorate over 
time due to disturbing factors such as environment, 
increasingly surpassing (or closely surpassing) it’s design 
capacity, subsystem (subcomponent) degradation etc.  We 
introduce an approach for assessing and recognizing 
potential damage of systems by using a generic metric with 
fuzzy sets.  We propose transforming sparse data in a 
Bayesian updating scheme into fuzzy sets to be used in a 
similarity metric to identify the health or damage state.  
Two case studies using different damage features are used 
as exemplary applications for the proposed approach. 
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1 Introduction 
The emerging field of Structural Health Monitoring 

(SHM) addresses the in-situ behavior of structures by 
assessing their performance and recognizing damage or 
deterioration. SHM involves System State Definition, Data 
Acquisition, Data Communication, Data Filtration, Data 
Reduction, Feature Extraction, Pattern Recognition and 
Decision Making.  Each of these components is equally 
important to determine the state of health of a structure. 
Extensive research on SHM has been developed over the 
last decade on data acquisition, feature extraction and data 
reduction techniques [1-4]. However, little research has 
been devoted to the pattern recognition and decision 
making components in SHM systems.   

Most of the research that examines damage recognition 
for SHM is focused on statistical pattern recognition 
techniques. Such approaches as establishing statistical 
process control [5], defining confidence intervals for 
damage indices [6], or artificial intelligence techniques like 
support vector classifiers [7] have been addressed in the 
literature. Since statistical pattern recognition can account 
for only distinct damage features for which data can have a 
crisp point-wise quantification, such approach immediately 
restricts damage detection to the limitations of probabilistic 
assumptions.  

In providing damage recognition for systems structures 
“or systems”, two questions need to be answered: “Is there 

damage in the structure?” and, if yes, “How severe is this 
damage?”  The problem is that damage can occur at 
various rates:  slowly, (environmental and time-dependent 
conditions), quickly and predictably, (heavy traffic 
loading), and quickly and unpredictably (earthquake 
acceleration). Damage can also occur at a variety of non-
distinct and overlapping levels of severity such as minor, 
moderate, severe and very severe.  

Observation of most features suggested in the 
literature for damage identification (usually named damage 
index) showed that a major challenge in damage 
recognition in SHM is the non-stationary sample space of 
the damage index; it is dependent on the health state of 
what is assumed to be a healthy system. It was also 
observed that the frequency of occurrence of a healthy state 
in the database is not constant from one set of observations 
to another. Therefore, it becomes obvious that damage 
cannot be classified as a random process and probabilistic 
assumptions for damage recognition might not hold. It can 
also be argued that most suggested probabilistic based 
damage recognition techniques represent a one-
dimensional approach from the uncertainty point of view 
being limited to a smaller scope of information (statistical 
knowledge). However, given the relatively low sampling 
rates in SHM systems, the scarcity of historical 
observations to form expert knowledge, and finally the 
necessary health (or damage) patterns overlapping to 
represent interconnected states, pattern uncertainty might 
have a significant effect on decision making for SHM 
systems. However, we assert that uncertainty in damage 
recognition is more epistemic (subjective) than aleatoric 
(objective), and that is we can improve our knowledge 
about damage and reduce uncertainty of its recognition as 
we obtain further observations. The major difference 
between aleatoric and epistemic uncertainties is that 
aleatoric refers to random uncertainties that are irreducible 
while epistemic uncertainty is related to system knowledge 
and thus is a reducible uncertainty [8, 9].  



2 A Generic Fuzzy Damage   
 Recognition Approach 

 Given the inherent uncertainty in the damage features 
(indices) and admitting a level of imprecision in damage 
states using fuzzy sets, we can feasibly define damage 
levels. We propose a new method to determine damage 
levels by establishing fuzzy sets on the damage index 
domain. In doing this, we combine sparse measured point 
data and interval data, Bayesian updating, and expert 
judgment within the construct of the fuzzy logic framework 
to substantiate fuzzy sets for damage recognition. We will 
explain first our approach to establish the health patterns 
and a method for providing damage recognition thereafter. 

2.1 Establishing fuzzy health or “damage” 
patterns 

 Most damage detection approaches produce a damage 
index. If the damage index (we will denote it λ) is 
monitored during a period of healthy performance THealthy, a 
set of consecutive values of this index can be acquired. We 
suggest using this set of consecutive values to produce a 
group of fuzzy membership functions that describe all 
damage levels. The state of the structure will then be 
determined based on the vector’s (fuzzy pattern) degree of 
similarity to the defined fuzzy damage levels. This current 
approach expands on the all-probabilistic method in most 
existing damage identification methods e.g. [10] and [11].  

 The disadvantage of the all-probabilistic approach is 
that it is being constrained with many assumptions. One 
assumption is the assignment of a symmetric distribution to 
the response levels. Without an infinitely number of 
measurements, this cannot be proven to be the case.  Where 
the luxury of having an infinitely number of measurements 
or performing extensive computer simulation is not 
feasible, pragmatic damage recognition where existing 
information is used as prudently as possible becomes the 
answer. This means that we will use measured data along 
with expert judgment to modify the fuzzy membership 
functions using both dense and sparse data.  We will have 
ample data during the healthy training period during which 
other methods of system performance assessment might be 
deployed. Hence we will develop a “Healthy” fuzzy set 
that reflects an undamaged structural state. The shape of 
this fuzzy set can be determined according to the observed 
values of the damage index during healthy performance. 
This can be assumed to be Gaussian (or any other shape of 
membership function until enough observations are 
acquired). The problem is that all available observations 
represent only “Healthy” performance; successful damage 
recognition requires fuzzy patterns (membership functions) 
to describe possible damage levels. To accomplish building 
the remaining fuzzy patterns, we suggest adopting the 
approach proposed by Huyse and Thacker [12] to 
overcome the challenge of risk assessment under 

conflicting and insufficient data. We, therefore, suggest 
developing fuzzy membership functions that mimic the 
shape of a probability distribution that is suitable for sparse 
data namely Poisson distribution function.  

 The Poisson distribution is useful for cases where 
infrequent events are seen; it essentially describes a 
counting process.  We are taking a conceptual departure 
from this and using only the shape of the Poisson 
distribution over a continuous domain of expected values 
as in [12]. In our application, infrequent and high damage 
index “λ” values might be measured and the shape of the 
distribution (membership function) can be continually 
updated. This summarizes the data frequency and gives us 
a well justified value on which to define our damage fuzzy 
membership functions. This proposed approach is much 
more convenient in that it solely depends on inference of 
healthy observations with expert judgment without 
demanding any further knowledge via structural simulation 
or special field testing.  Here, for a generic approach, four 
structural health patterns (damage levels) ranging from 
healthy to significantly damaged are proposed. The non-
distinct boundaries between these health patterns and the 
inherent overlap therewith make fuzzy systems a suitable 
candidate for damage recognition. We begin by defining 
the “Healthy” pattern given the fact that a reasonable 
amount of observations are made during a time period, 
THealthy.  Therefore, the membership function that describes 
the fuzzy set “Healthy” is defined as a left-shouldered 
fuzzy set using the Gaussian function described in equation 
(1) in a similar fashion to damage analysis for earthquakes 
[8]:  
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Hµ represents the membership function of the fuzzy set 

representing healthy pattern that has an average observed 
damage index of Hλ  and a spread of 

Hλσ . Furthermore, 

information from this first fuzzy set can be used to develop 
the proximate fuzzy set, “Little Damage”. 

It is important to note that the Gaussian shape is used 
only for simplicity of calculation and the use of other left-
shouldered membership function shapes for the healthy 
fuzzy set shall not affect the validity of the approach. We 
thus, begin with an uncertain knowledge about the domain 
“Little Damage”. What is certainly known is that our 
universe of discourse is the set of all possible λ values, 
non-negative and real numbers and that all accessible 
information has been attained during healthy performance 
period. Thus we expand the universe of discourse to 
incorporate the fuzzy set “Little Damage”. Since the 
domain of this first set, “Healthy” is known, the lower 



bound of “Little Damage” can be located by assuming it to 
match the mean healthy value Hλ  such that the universe 
of discourse of the fuzzy set “Little Damage” denoted 
as

~
LD can be defined as: 

}x|x{LD H
~

λ≥=                 (2) 

The following step is to identify the shape of the 
membership function for 

~
LD . An approach to describe the 

fuzzy set “Little Damage” given the limited knowledge 
about the health or (damage) index λ in this domain is to 
assign the fuzzy set 

~
LD a non informative prior 

distribution. Such distribution attempts to represent a 
certain level of initial lack of knowledge about the system 
[9]. Unless specific knowledge about the system is 
available, a uniform distribution is traditionally assigned to 
describe the non-informative prior. In our case of damage 
recognition using the λ values, we realize that the fuzzy 
sets are constructed in such a way that each fuzzy set will 
cover its own range of λ values while reserving an inherent 
overlap with the other fuzzy sets. This knowledge negates 
the possibility of using uniform distribution to represent the 
non-informative prior. Therefore, Jeffrey’s non-informative 
prior [9] distribution over the domain X (λ values) that 
assumes no-observation, x, is used here: 

X
1)X(f =                            (3) 

 Therefore, we will calculate the degree to which data 
x is contained in the domain X using Bayesian updating. 
Bayesian Updating is a natural consequence of Bayes’ 
Theorem.  Bayes’ Theorem simply combines prior 
knowledge about a parameter with additional support data 
to compute the subsequent knowledge of the parameter 
[8,9]. This updated knowledge is known as the posterior 
distribution )X|x(f and is proportional to the product of 
the likelihood )x|X(l and the prior distribution )X(f  
as: 
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 Our approach goes a step further in accommodating 
uncertainty by using interval data [x1 to x2].  In doing so we 
will need to compute the likelihood that the damage 
domain X contains the observation interval data [x1 to x2] 
which can be computed as 
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 We will assume that the likelihood of damage to 
follow Poisson’s density function. This is based on the 

assumption that damage events represent non-frequent 
occurrences which harmonizes with the typical use of 
Poisson distribution to represent non-frequent and 
independent variables [9]. Poisson distribution is expressed 
as 
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 Substituting equation (6) into equation (5) yields the 
likelihood given interval data as 
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 Bayesian updating to produce the first estimate of the 
membership function that describes the fuzzy set “Little 
Damage” can be performed by substituting equations (6) 
representing the likelihood of damage and equation (3) 
representing the non-informative prior into equation (4) 
which yields 
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 This first estimate assumes one single interval 
observation with x1 being the highest λ healthy 
measurement and x2 defined as an expert seeded point. 
These will be updated using subsequent interval 
observations to supply the membership function that 
describes the fuzzy set “Little Damage” for the ith interval 
observation [x1 to x2]i as: 
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 A similar procedure is used to develop initial 
estimates for the other damage fuzzy sets in accordance 
with our knowledge of fuzzy set boundaries. Additionally, 
the last fuzzy set, “Significant Damage”, will be assumed 
to act as the upper bound on the universe of discourse 
much like “Healthy” such that it is right-shouldered as   
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where, *
Sλ   is the prototypical “Significant Damage” λ 

value.   

 To summarize, λ values over a time period will be 
used to develop the fuzzy set, “Healthy”.  In succession, 
the lower bounds for the remaining fuzzy sets will use the 
shape of Jeffrey’s non-informative prior in posterior 
updating of the likelihood represented by Poisson 
distribution. Interval data within the bounds set forth by 
experts will update the functions in equations (8), (9) and 
(10) to form three fuzzy damage sets, “Little Damage” 
“Moderate Damage” and “Significant Damage”. This is an 
original process that incorporates both single point and 
interval data to build on received evidence in the form of 
statistical data or expert judgment. The approach is also 
generic that it can be applied regardless of the damage 
feature and the shape of the membership functions to 
describe the “Healthy” fuzzy set. The developed fuzzy sets 
are ready to be used to recognize recent observations at 
time of unknown health state. 

2.2 Fuzzy damage recognition 
 Now we want to recognize (identify or classify) a set 

of consecutive input observations (λ) into one of the pre-
defined fuzzy set levels of damage. This recognition 
requires a concept in fuzzy logic, degree of similarity.  The 
degree of similarity of an input observation vector acquired 
at any time period N will be measured and compared to the 
established fuzzy sets in order to determine the structure’s 
health or (damage) state. Following Ross [4] we introduce 
a damage metric (DMY) that represents the degree of 
similarity of any newly observed fuzzy set of observations 

~
Newλ and the four existing fuzzy sets “Healthy”, “Little 

Damage”, “Moderate Damage” and “Significant Damage”, 
here denoted as 

~
Y . The fuzzy damage metric can be 

determined  
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where )Y(
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New •λ  represents the inner product of the 

two fuzzy vectors  and )Y(
~
i

~
New ⊕λ   represents the outer 

product of the two vectors [4].  The similarity metric 
“DMi” is thus computed to represent the degree of 
similarity between the new vector of λ observations 
representing the unknown structural health and represented 
by the fuzzy set 

~
Newλ and each of the four fuzzy structural 

health patterns previously defined. Using principles of the 
maximum approaching degree explained in [4], the fuzzy 
health or “damage” pattern with the maximum similarity 
metric “DM” will be the closest health pattern to describe 
the structural health.   

3 Case Studies  
 To demonstrate the versatility of the proposed model 

two case studies where damage recognition is required are 
examined. In both case studies, a feature that represents 
damage in the structure (namely damage index) is 
computed. Values of the damage index are simulated to 
represent the structural response during different health or 
damage states of the structure. The model is first used to 
construct all the fuzzy damage membership functions using 
the damage index values observed only during the healthy 
time. The model ability to recognize other health or 
damage levels using a vector of damage index observations 
is tested. The model results are compared to the damage 
state (class) as reported by the case study. 

 The first case study is reported by Reda Taha et al. 
[13] for damage identification of a model structural steel 
bridge modelled using a finite element (FE) model. 
Accelerometers are assumed to be distributed over the 
bridge area.  Regional input and desired signals are 
simulated for training during healthy performance and for 
testing during healthy and damaged instances using finite 
element modeling.  Accelerations of the FE model are 
analyzed using a neural-wavelet damage diagnosis module. 
The damage index ranges between 0 and 1000 and 
expresses energy of signals computed in the wavelet 
domain. The higher the damage index the more severe the 
level of damage in the structure. More details about the 
neural-wavelet damage diagnosis module and the wavelet 
damage feature can be found elsewhere [10]. The damage 
index (λ1) values for the model steel bridge observed 
during healthy performance are shown in Table 1.  Data 
shown in Table 1 are used to construct the fuzzy damage 
sets on the universe of discourse of λ1.  To test the model a 
vector of unclassified λ1 observations (Table 2), known by 
the FE model to represent little damage in the steel bridge, 
are forwarded to the model for damage recognition. 

Table 1. Healthy observations of λ1 

t* 1 2 3 4 5 6 
λ1 41.4 58.9 88.0 28.4 14.8 29.1 
t* 7 8 9 10 11  
λ1 93.6 26.6 53.7 39.9 122.7  
t* is time instance 

Table 2. Unknown health or damage set observations of λ1 

t* 1 2 3 
λ1 174.2 260.1 291.0 

t* is time instance 

 The second case study examines failure of a 
composite beam-steel plate connection as reported by 
Salvino et al. [11]. Damage identification was performed 
by observing the phase of traveling structural wave in the 
connection. A damage index (λ2) that represents the 



average phase change in the strain signals  between the 
healthy and damage structure was reported. The original 
damage index reported by [11] ranges between 0 and 0.35 
while (λ2) used here were scaled to range between 0 and 
350. More details about the phase angle damage index can 
be found elsewhere [11]. The damage index (λ2) values for 
the composite beam-steel plate connection as simulated 
using FE models during healthy performance are shown in 
Table 3. To test the model a vector of unclassified λ2 
observations (Table 4), known by the FE model to 
represent significant damage in the connection, are 
forwarded to the model for damage recognition. 

Table 3. Healthy observations of λ2 

t* 1 2 3 4 5 6 
λ2 4 10 14 14 16 31 
t* 7 8 9 10 11 12 
λ2 32 36 39 42 46 50 

t* is time instance 

Table 4. Unknown health or damage set observations of λ2 

t* 1 2 3 4 5 
λ2 254 258 258 261 265 
t* is time instance 
 
4 Results and Discussions 

 Our damage recognition approach first produces 
fuzzy sets, “Healthy”, “Little Damage”, “Moderate 
Damage” and “Significant Damage” for the two cases as 
shown in Figures 1 and 2. Only the healthy observations 
are used to define the first “Healthy” fuzzy set. 
Subsequently, the extreme value from the “Healthy” 
observations was used with an expert-defined “seed” point. 
This seed point represents the expert’s opinion on what 
defines the various damage sets. This point becomes 
obsolete as more data are incorporated in the updating 
process.  

 

Figure 1. Final shape of the membership functions for the 
four damage fuzzy sets for the first case study. 

 

Figure 2. Final shape of the membership functions for the 
four damage fuzzy sets for the second case study. 
 

 Pictorial representations of the unknown fuzzy set 
representing the unknown observations for both case 
studies are shown in Figures 3 and 4 for the first and 
second case studies respectively. Equation (10) was then 
used to recognize the observation sets as one of these four 
fuzzy damage sets for both case studies.  The similarity 
metrics (DM1, DM2, DM3, DM4) of the testing instances 
with respect to the four structural health fuzzy sets 
(Healthy, Little Damage, Medium Damage and Significant 
Damage) for both case studies were computed and are 
presented in Table 5.  

Our method identifies the structural response of the 
first case study as “Little Damage” with a slight tendency 
to “Moderate Damage.” Similarly, the structural response 
of the second case study is identified as “Significant 
Damage” with some overlap into “Moderate Damage.” 
Thus, it can be observed that the fuzzy damage recognition 
algorithm was capable of detecting the damage level in 
both structures very successfully. Additionally, we can get 
a clear picture of the overall state of the structure by 
knowing the amount of its identified state and its relation to 
a nearby damage level. Further validation of the model is 
currently being considered.  

 

Figure 3. Final shape of the membership functions along 
with the unknown damage set for the first case study 



 

Figure 4. Final shape of the membership functions along 
with the unknown damage set for the second case study 

Table 5. Fuzzy Damage Metric for the two case studies 

 DM1 DM2 DM3 DM4 
λ1 0.50 0.98 0.76 0.53 
λ2 0.50 0.50 0.65 1.00 

 

5 Conclusions 
We have demonstrated a method to quantify evidence 

of damage levels by means of the computations of fuzzy 
set theory. Moreover, we have shown that this method and 
metric are generic for any structural health monitoring 
system regardless of the damage feature. The proposed 
method was used to construct fuzzy health (or damage) 
patterns for two case studies using healthy observation 
data. Furthermore, our method used Jeffery’s non-
informative prior with expert “seed” data in a Bayesian 
updating scheme. Subsequently, a similarity metric was 
used to identify any new set of observations into a 
particular level of damage. This generic method defines the 
location and shape of the membership functions using 
statistical based techniques. Thus it becomes an approach 
with far-reaching potential as it is independent of the 
feature used to represent damage. The method was proven 
to be both accurate and versatile.  
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