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ABSTRACT 
 
Stated in its most basic form, the objective of damage diagnosis is to ascertain simply if damage is present or not based on 
measured dynamic characteristics of a system to be monitored. In reality, structures are subject to changing environmental 
and operational conditions that affect measured signals, and environmental and operational variations of the system can often 
mask subtle changes in the system’s vibration signal caused by damage. In this paper, a unique combination of time series 
analysis, neural networks, and statistical inference techniques is developed for damage classification explicitly taking into 
account these ambient variations of the system. First, a time prediction model called an auto-regressive and auto-regressive 
with exogenous inputs (AR-ARX) model is developed to extract damage-sensitive features. Then, an auto-associative neural 
network is employed for data normalization, which separates the effect of damage on the extracted features from those caused 
by the environmental and vibration variations of the system. Finally, a hypothesis testing technique called a sequential 
probability ratio test is performed on the normalized features to automatically infer the damage state of the system. The 
usefulness of the proposed approach is demonstrated using a numerical example of a computer hard disk and an experimental 
study of an eight degree-of-freedom spring-mass system. 
 
 

1. INTRODUCTION 
 
Structural health monitoring is a problem, which can be addressed at many levels. Stated in its most basic form, the objective 
is to ascertain simply if damage is present or not. The philosophy is simple: During the normal operation of a system or 
structure, measurements are recorded and features are extracted from data, which characterize the normal conditions. After 
training the diagnostic procedure in question, subsequent data can be examined to see if the features deviate significantly 
from the norm. That is, a simple damage classifier such as outlier analysis (Worden, 1997; Worden et al., 2000) can be 
employed for deciding if measurements from a system or structure indicate significant departure form the previously 
established normal conditions. Ideally, an alarm is signaled if observations increase above a pre-determined threshold. 

Unfortunately, matters are seldom as simple as this. In reality, structures will be subjected to changing environmental 
and operational states such as varying temperature, moisture, and loading conditions affecting the measured features and the 
normal condition. In this case, there may be a continuous range of normal conditions, and it is clearly undesirable for the 
damage classifier to signal damage simply because of changes in the environment or operation. In fact, these changes can 
often mask subtler structural changes caused by damage. 

For instance, Farrar et al. (1994) performed vibration tests on the I-40 Bridge over the Rio Grande in New Mexico, USA 
to investigate if modal parameters can be used to identify structural damage within the bridge. Four different levels of 
damage were introduced to the bridge by gradually cutting one of the bridge girders as shown in Figure 1. The change of the 
bridge’s fundamental frequency was plotted with respect to the four damage levels as shown Figure 2. Because the 
magnitude of the bridge’s natural frequency is proportional to its stiffness, the decrease of the frequency is expected as the 
damage progresses. However, the results in Figure 2 belie the intuitive expectation. In fact, the frequency value increased for 
the first two damage levels, and then eventually decreased for the remaining two damage cases. Later investigation revealed 
that, beside the artificially introduced damage, the ambient temperature of the bridge played a major role in the variation of 
the bridge’s dynamic characteristics. Other researchers also acknowledged potential adverse effects of varying operational 
and environmental conditions on vibration-based damage detection (Cawley, 1997; Ruotolo and Surace, 1997; Helmicki, et 
al., 1999; Rohrmann, et al., 1999; Cioara and Alampalli, 2000, Sohn et al., 2001a).  

Data normalization is a procedure to seperate signal changes caused by operational and environmental variations of the 
system from structural changes of interests, such as structural deterioration or degradation. One approach to solving this 
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problem is to measure parameters related to these environmental and operational conditions as well as the vibration features 
over a wide range of these varying conditions to characterize the normal conditions. The normal conditions can be then 
parameterized to reflect the different environmental and operational states. Such a parameterization study was applied to 
vibration signals obtained from the Alamosa Canyon Bridge in New Mexico, USA to relate the change of the bridge’s 
fundamental frequency to the temperature gradient of the bridge (Sohn et al, 1999). The measured fundamental frequency of 
the Alamosa Canyon Bridge in New Mexico varied approximately 5% during a 24-hour test period, and the change of the 
fundamental frequency was well correlated to the temperature difference across the bridge deck. Because the bridge was 
approximately aligned in the north and south direction, there was a large temperature gradient between the west and east 
sides of the bridge deck throughout the day. A simple linear filter using the temperature readings across the bridge as inputs 
was constructed and was able to predict the frequency variation. Then, a damage classifier, which does not provide false 
indication of damage under changing environmental and operational conditions, can be built. On the other hand, there are 
cases where it is difficult to measure parameters related to the environmental and operational conditions. Furthermore, if 
damage produces a change in the measured signals that is in someway orthogonal or uncorrelated to the change caused by the 
environmental or operational variability, it may be possible to distinguish the change in the measured signals caused by 
damage from that caused by the sources of variability without a measure of the operational or environmental variability. This 
paper addresses the later cases where no measurements are available for these natural variations. Other applications of this 
data normalization are presented in Sohn and Farrar (2001) and Sohn et al. (2001b). 

In this paper, a unique combination of time series analysis, auto-associative neural networks, and statistical pattern 
recognition techniques is developed to automate a damage identification problem with a special attention to data 
normalization. First, a time prediction model, called an Auto-Regressive and Auto-Regressive with Exogenous inputs (AR-
ARX) model is fit to vibration signals measured during normal operating conditions of the structure. Next, data normalization 
is performed based on the auto-associative neural network where target outputs are simply inputs to the network. Using the 
extracted features, which are the parameters of the AR-ARX model corresponding to the normal conditions, as inputs, the 
auto-associative neural network is trained to characterize the underlying dependency of the extracted features on the 
unmeasured environmental and operational variations by treating these environmental and operational conditions as hidden 
intrinsic variables in the neural network. When a new time signal is recorded from an unknown state of the system, the 
parameters of the time prediction model are computed for the new data set and are fed to the trained neural network. When 
the structure undergoes structural degradation, it is expected that the prediction errors of the neural network will increase for 
the damage case. Based on this premise, a damage classifier is constructed using a hypothesis testing technique called a 
sequential probability ratio test (SPRT). The SPRT is one form of parametric statistical inference tests and the adoption of 
the SPRT to damage detection problems can improve the early identification of conditions that could lead to performance 
degradation and safety concerns.  

The layout of this paper is as follows: Section 2 briefly reviews the time series analysis of vibration signals using the 
AR-ARX model. In Section 3, a description of the auto-associative neural network is given relating this neural network with 
Principal Component Analysis (PCA) and Nonlinear Principal Component Analysis (NLPCA). Section 4 outlines the main 
theory of the sequential probability ratio test (SRPT). The proposed approach is applied to numerical data simulated from a 
computer hard disk model and to experimental data obtained from an eight degree-of-freedom (DOF) spring-mass system in 
Sections 5 and 6, respectively. Section 7 concludes and summarizes the findings of this study. 

 
  

Dam 1 Dam 2 Dam 3 Dam 4  
(a) Introduction of damage in one of the bridge girders by 

electric saw cutting 
(b) Four levels of damage introduced at the girder 
(the shaded area represents reduced cross-section) 

Figure 1: Damage Detection Study of the I-40 Bridge over the Rio Grande in New Mexico, USA. 



 

Figure 2: The fundamental frequency change of the I-40 Bridge as a function of the four damage levels shown in Figure 1. 

 
 
 

2. TIME SERIES ANALYSIS 
 

A linear prediction model combining AR and ARX models is employed to compute input parameters for the subsequent 
analysis of an auto-associative neural network presented in Section 3. First, all time signals are standardized prior to fitting an 
AR model such that; 
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where x̂  is the standardized signal, xµ  and xσ  are the mean and standard deviation of x, respectively. This standardization 
procedure is applied to all signals employed in this study. (However, for simplicity, x is used to denote x̂  hereafter.) 
For a given time signal )(tx , an AR model with r auto-regressive terms is constructed. An AR(r) model can be written as 
(Box et al., 1994): 
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The AR order is set to be 30 for the experimental study presented in Section 6 based on a partial auto-correlation analysis 
described in Box et al. (1994). For the construction of a two-stage prediction model proposed in this study, it is assumed that 
the error between the measurement and the prediction obtained by the AR model [ )(tex  in Equation (2)] is mainly caused by 
the unknown external input (Sohn and Farrar, 2001). Based on this assumption, an ARX model is employed to reconstruct the 
input/output relationship between )(tex  and )(tx ; 
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where )(txε  is the residual error after fitting the ARX model to )(tex  and )(tx  pair. The feature for damage diagnosis will 
later be related to this quantity, )(txε . Note that this AR-ARX modeling is similar to a linear approximation method of an 
Auto-Regressive Moving-Average (ARMA) model presented in Ljung (1999) and references therein. Ljung (1999) suggests 
keeping the sum of p and q smaller than r ( rqp ≤+ ). Although the p and q values of the ARX model are set rather 
arbitrarily in this study, similar results are obtained for different combinations of p and q values as long as the sum of p and q 
is kept smaller than r. The iα  and jβ  coefficients of the ARX model are used as input parameters for the following analysis 
of the auto-associative neural network. ARX(5,5) is used for the experimental study presented later on. 
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3. AUTO-ASSOCIATIVE NEURAL NETWORKS 
 
PCA has been proven to facilitate many types of multivariate data analysis including data reduction and visualization, data 
validation, fault detection, and correlation analysis (Fukunaga and Koontz, 1970). Similar to PCA, NLPCA is used as an aid 
to multivariate data analysis. While PCA is restricted to mapping only linear correlations among variables, NLPCA can 
reveal the nonlinear correlations present in data. If nonlinear correlations exist among variables in the original data, NLPCA 
can reproduce the original data with greater accuracy and/or with fewer factors than PCA. This NLPCA can be realized by 
training a feedforward neural network to perform the identity mapping, where the network outputs are simply the 
reproduction of network inputs. For this reason, this special kind of neural network is named an auto-associative neural 
network (Figure 3). The network consists of an internal “bottleneck” layer, two additional hidden layers, and one output 
layer. The bottleneck layer contains fewer nodes than input or output layers forcing the network to develop a compact 
representation of the input data. The NLPCA presented in this paper is a general purpose feature extraction/data reduction 
algorithm identifying features that contain the maximum amount of information from the original data set. In this section, 
PCA and NLPCA are briefly reviewed. More detailed discussions on PCA, NLPCA, and auto-associative networks can be 
found from Fukunaga (1990), Kramer (1991), Rumelhart and McClelland (1988), respectively. 
 
3.1. Principal Component Analysis (PCA) 
 

PCA is a linear transformation mapping multidimensional data into lower dimensions with minimum loss of information. Let 
Y represent the original data with the size of lm× . Here, m is the number of variables and l is the number of data set. PCA 
can be viewed as a linear mapping of data from the original dimension m to a lower dimension d; 

TYX =  (4) 

where X ( ld×ℜ∈ ) is called the scores matrix. T ( md×ℜ∈ ) is called the loading matrix and ITT =T . The loss of information 
in this mapping can be assessed by re-mapping the projected data back to the original space:  

XTY Tˆ =  (5) 

Then, the reconstruction error (residual error) matrix E is defined as: 

YYE ˆ−=  (6) 

The smaller the dimension of the projected space, the greater the resulting error. The loading matrix T can be found such that 
the Euclidean norm of the residual matrix, ||E||, is minimized for the given size of d. It can be shown that the columns of T 
are the eigenvectors corresponding to the d largest eigenvalues of the covariance matrix of Y (Fukunaga, 1990).  
 
3.2. Nonlinear Principal Component Analysis (NLPCA) 
 

NLPCA generalizes the linear mapping by allowing arbitrary nonlinear functionalities. Similar to Equation (4), NLPCA 
seeks a mapping in the following form; 

G(Y)X =  (7) 

where G is a nonlinear vector function and consists of d number of individual nonlinear functions: G = { }dGGG ,...,, 21 . By 
analogy to Equation (5), the inverse transformation, restoring the original dimensionality of the data, is implemented by a 
second nonlinear vector function H: 

H(X)Y =ˆ  (8) 

The information lost is again measured by E= YY ˆ− . Similar to PCA, G and H are computed to minimize the Euclidean 
norm of ||E||, meaning minimum information loss in the same sense as PCA. NLPCA employs artificial neural networks to 
generate these arbitrary nonlinear functions. Cybenko (1989) has shown that functions of the following form are capable of 
fitting any nonlinear function )(xy g=  to an arbitrary degree of precision; 
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where ky and ix  are the kth and ith components of y and x, respectively. k
ijw  represents the weight connecting the ith node in 

the kth layer to the jth node in the (k+1)th layer, and jb  is a node bias. iN  is the number of nodes in each layer. )(xh  is a 



monotonically increasing continuous function with the output range of 0 to 1 for an arbitrary input x. A sigmoid transfer 
function is often used in neural networks to realize this function. Note that, to fit an arbitrary nonlinear function, at least two 
layers of weighted connections are required, and the first hidden layer should be composed of nonlinear transfer functions 
such as the sigmoid function. Therefore, the two nonlinear vector functions in Equations (7) and (8) should have the same 
architecture: one hidden layer with nonlinear transfer functions and one output layer. The output layer can have either linear 
or nonlinear transfer functions without affecting the generality of the mapping.  

Now, an auto-associative neural network is constructed by combining mapping G and de-mapping H functions together 
as shown in Figure 3. The combined network contains three hidden layers; the mapping, the bottleneck, and de-mapping 
layers. The second hidden layer is referred to as the bottleneck layer because it has the smallest dimension among the three 
layers. For instance, the first hidden layer of G, which consists of 1M  nodes with nonlinear transfer functions, operates on 
the columns of Y mapping m inputs to 1M  node outputs. The output of the first hidden layer is projected into the bottleneck 
layer, which contains d nodes. In a similar fashion, the inverse mapping function H takes the columns of X as inputs relating 
d inputs to 2M  node outputs. The final output layer reconstructs the target output Ŷ , and contains m nodes. It should be 
noted that if the neural networks for G and H are to be trained separately, X should be known for the separate training of the 
G and H networks. It is observed that X is both the output of G and the input of H. Therefore, combining the two networks in 
series, where G feeds directly into H, results in a new network whose inputs and target outputs are not only known but also 
identical. Now, the supervised training can be applied to the combined network. Note that the nodes in the mapping and de-
mapping layers must have nonlinear transfer functions to model arbitrary G and H functions. However, nonlinear transfer 
functions are not necessary in the bottleneck layer. If the mapping and de-mapping layers were eliminated and only the linear 
bottleneck layer were left, this network would reduce to linear PCA as demonstrated by Sanger (1989). Typically 1M  and 

2M  are selected to be larger than m and they are set to be equal ( 1M = 2M ). 
In this study, the auto-associative network is employed to reveal the latent relationship between the extracted features 

and the unmeasured intrinsic parameters causing the variations of the features. Particularly, the auto-associative neural 
network presented here uses the coefficients of the AR-ARX model presented in the previous section as inputs as well as 
target outputs, and the network is trained to reveal the inherent excitation level driving the changes. If the neural network is 
trained to capture the embedded relationships, the prediction error of the neural network will grow when a data set 
corresponding to some other physical system, such as ones obtained from a damage state of the system, is fed to the network. 
Based on this assumption, the auto-associative network is incorporated with the SPRT described in the following section to 
identify damage. 
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Figure 3: A schematic presentation of an auto-associative neural network 

 
 



4. SEQUENTIAL PROBABILITY RATIO TEST 
 
In the previous section, the auto-associative neural network is trained using the AR-ARX coefficients as inputs as well as 
outputs. If iα̂  and jβ̂  are defined as the outputs estimated from the network, the residual errors using these estimated AR-
ARX coefficients can be computed;  
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where )(tyε  is the residual error obtained using the time series )(tx  and the iα̂  and jβ̂  coefficients estimated from the 
network. Here, the subscript “y” is used to distinguish this residual error from the one shown in Equation (3). When a new set 
of the AR-ARX coefficients are obtained from a damaged structure and fed to the network, the auto-associative network 
trained with the undamaged cases will not be able to properly reproduce the new AR-ARX coefficients. Therefore, the 
standard deviation of the residual error )(tyε  associated with the iα̂  and jβ̂  coefficients is expected to increase compared to 
that of the baseline residual error )(txε .  

Based on this premise, a simple two-class damage classifier is constructed using the standard deviation of the residual 
errors as the parameter in question (Sohn et al., 2002): 

∞<<<≥≤ 111 0,)(:,)(: σσσεσσεσ oyoyo HH  (11) 

When the standard deviation of the residual error )( yεσ  is less than a user specified lower bound oσ , the system in question 
is considered undamaged. On the other hand, when )( yεσ  becomes equal to or larger than the other user specified upper 
bound 1σ , the system is suspected to be damaged. It should be noted that the selection of oσ  and 1σ  is structure-dependent, 
and it might be necessary to use signals from a few damage cases as well as from undamaged cases in order to properly 
establish these two decision boundaries.  

A SPRT starts with observing a sequence of the residual errors, )}({ iyε  ),2,1( K=i . This accumulated data set at stage 
n  is denoted as (Ghosh, 1970): 

)](,)1([ nE yyn εε K=  (12) 

The goal of a statistical inference is to reveal the probability model of nE , which is assumed to be at least partially unknown. 
When the statistical inference is cast as a parametric problem, the functional form of nE  is assumed known and the statistical 
inference poses some questions regarding the parameters of the probability model. For instance, if )}({ iyε  are independent 
and identically distributed (i.i.d.) normal variables, one may pose some statistical test about the mean and/or the variance of 
this normal distribution.  

A sequential test is one of the simplest tests for such a statistical inference where the number of samples required before 
reaching a decision is not determined in advance. An advantage of the sequential test is that, on average, a smaller number of 
observations are needed to make a decision compared to the conventional fixed-sample size test. For the well-established 
fixed-sampling tests, the sample size n  is fixed, and an upper bound on the type I error is pre-specified. Then, an optimal 
fixed-sample test is selected by minimizing the probability of type II error. On the other hand, a sequential test specifies 
upper bounds on the probabilities of type I and II errors, and minimizes the sample number required to make a decision. A 
type I error arises if oH  is rejected when in fact it is true. Type II errors arise if oH  is accepted when it is false. Among 
various valid sequential tests, it can be proven that the SPRT minimizes on average the sample size required to make a 
correct decision making it an optimal sequential test (Ghosh, 1970). Because of this extreme sensitivity of the SPRT to signal 
disturbance, the SPRT has been also applied for the surveillance of nuclear power plant components (Humenik and Gross, 
1991; Cross and Humenik, 1990) and for identifying loosened bolted joints in a three-story building model (Allen et al., 
2002). 

For the hypothesis test in Equation (11), a SPRT, S(b,a), makes three distinctive decisions at stage n  (Ghosh, 1970); 
Accept oH  if bZ n ≤  
Reject oH  if aZ n ≥  
Continue observing data if aZb n ≤≤  

(13) 

where the transformed random variable nZ  is the natural logarithm of the probability ratio at stage n ; 
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where )|( on HEf  or )|( onEf σ  is the conditional probabilty of observing the accumuated data set nE  given the 
assumption that the null hypothese is true. )|( 1HEf n  or )|( 1σnEf  is defined in a similar fashion. Without any loss of 
generality, nZ  is defined to be zero when )|( 1HEf n = )|( on HEf = 0. b  and a  are the two stopping bounds for accepting 
and rejecting oH , respectively, and they can be estimated by the following Wald approximations (Wald, 1947); 
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where α  and β  the pre-determined upper limits for type I and II errors, respectively.  
When implementing the SPRT, a trade-off must be considered before assigning values for α  and β . When there is a 

large penalty associated with false positive alarms (for example, alarms that shut down traffic over a bridge), it is desirable to 
keep α  smaller than β . On the other hand, for safety critical systems such as nuclear power plants, one might be more 
willing to tolerate a false positive alarm to have a higher degree of safety assurance. In this case, β  is often specified larger 
than α . Although closed form solutions of a and b  are available for several probability models, it has been a standard 
practice to employ Equation (15) to approximate the stopping bounds in all practical applications. The continuation region 

aZb n ≤≤  is called the critical inequality of S(b,a) at stage n . 
If modified observations }{ iz ),2,1( K=i  are defined as follows: 
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Then, nZ  becomes: 
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Assuming that nE  has a normal distribution with mean µ  and standard deviation σ , iz  can be related to )(iyε : 
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A normality test such as a norlmality plot on the residaul errors reveals that the distribution of nE  is, in fact, well 
approximated by a Gaussian distribution. Futhemore, the authors demonstrate that the formulation in Equation (18) is also 
reliablely applicable to non-Gaussian distributions as well (Sohn et al., 2002).  

In a graphical representation of the SPRT S(b,a), nZ , which is the cumulative sum of the transformed variable iz , is 
continuously plotted against the two stopping bounds b and a. It should be noted that the mean µ of the distribution is often 
assumed to be zero. Even when µ  is unkown, the aforementioned procedure is still valid if )(iyε  is replaced by ix : 
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It can be shown that now }{ ix  has i.i.d. normal distribution with zero mean and the same standard deviation as )}({ iyε . 
 
 

5. NUMERICAL EXAMPLE 
 
First, the data normalization part of the proposed approach is verified using simulated data generated from a computer hard 
disk, the dynamic properties of which are assumed to be temperature-dependent (MathWorks, 1998). The data normalization 
using the auto-associative network is then incorporated with novelty analysis to detect the change of spring constants and 
damping values in the computer hard disk head. In this paper, only the data normalization part is presented and the damage 
diagnosis results using the novelty index can be found in Sohn et al. (2001b). Damage diagnosis results indicate that the 
incorporation of the auto-associative network with novelty measure enables one to detect damage even when the system 
exhibits a range of normal conditions.  
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Figure 4: A computer hard disk drive (MathWorks, 1998) 

 
5.1. Description of the Numerical Example 
 

Using Newton’s law, the second order differential equation for the read/write head shown in Figure 4 can be written as 
follows: 

iKK
dt
dC

dt
dJ i=++ θθθ

2

2

 (20) 

where J is the inertia of the head assembly, C is the viscous damping coefficient of the bearings, K is the return rotational 
spring constant, iK  is the motor torque constant, θ  is the angular position of the head, and i is the input current. Although 
most of modern hard disks have closed-loop controllers to accurately position the read/write head, reduce the seek time of the 
hard disk, and stabilize the system, the feedback compensator of the hard disk is omitted in this example for simplicity.  

Note that although the example presented in this study is simple, the proposed method has much wider applicability than 
this simulation because the method presented does not assume any physics-based modeling. For instance, when detecting 
faults in a composite plate, the complexity of the geometry, boundary conditions, and the lay-up make it difficult to model 
the baseline structure. Furthermore, the modeling of damage such as fiber pullout, fiber fracture, matrix fracture, and 
delamination can be even more difficult (Worden, 1997). The proposed method combining the auto-associative network and 
novelty index only requires a sequence of measurements corresponding to the normal conditions of the system. 

To simulate an operational variation of the system, it is assumed that the values of K, iK , J, and C are a function of an 
ambient temperature T as shown in Figure 5. For example, the nominal values of K, iK , J, and C are 10 Nm/rad, 0.047 

Nm/rad, 0.01 Kg-m, 0.0 Nm/(rad/sec), respectively, at T= oC15 . For the temperature range of [ oC15− , oC45 ], K, iK , and 

J values vary about %20±  from this nominal values at T= oC15 . C is simply changed from 004.0−  to +0.004 although the 
negative damping value does not have any physical meaning. The explicit expressions for these temperature dependent 
variables are assigned as follows: 
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Figure 5: Temperature variation of K, iK , J, C 
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The temperature dependencies of these variables are arbitrarily assumed without any physical understandings of the actual 
system. 

Taking the Laplace transform of Equation (20) and discretizing the continuous transfer function, the discrete transfer 
function )(zH  from i to θ is obtained: 

21
2

21)(
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++

+
=  (25) 

The coefficients of the transfer function in Equation (25) are chosen as features for the subsequent network training. Here, 
feature extraction refers to identifying the salient features of data to facilitate its use in a subsequent analysis. That is, features 
are a set of parameters derived from the original data set and they are supposed to capture the relevant information contained 
in the original data. Because of the underlying dependencies of K, iK , J, and C on T, the 1a , 2a , 1b , and 2b  parameters also 
become temperature dependent variables as shown in Figure 6. These coefficients can often be estimated by using time series 
analyses (Box et al., 1994) or system identification techniques (Ljung, 1999). 

The superficial dimensionality of data, or the number of observations, is often much larger than the intrinsic 
dimensionality, or the number of independent variable causing the underlying variations in the observations. This condition is 
also true in the current example because four parameters ( 1a , 2a , 1b , 2b ) are extracted and there is only one intrinsic variable 
T driving the changes of these four parameters. The auto-associative neural network is used to capture these nonlinear/linear 
dependencies of the transfer function coefficients on the temperature.  
 
5.2. Data Normalization using Auto-Associative Neural Network 
 

In order to train the neural network, the coefficients of the transfer function, 1a , 2a , 1b , 2b  are specified as inputs to the 

auto-associated neural network. Assuming a uniform distribution of temperature in the range of [ oC15− , oC45 ], K, iK , J, 
and C values are computed at randomly selected 600 temperature values according Equations (21)-(24). Then, the associated 

1a , 2a , 1b , 2b  coefficients are obtained, corrupted with Gaussian noises with 1% magnitude of the coefficients values in a 
RMS sense, and used as the training data set. That is, the data set consists of 600 observations with 4 input variables (m=4 
and l=600). The data set was scaled so that each variable ranges from –1 to 1. This scaling weighs all four variables equally 
important and is similar to the division of data set by standard deviation often used in the preparation of data for PCA. It 
should be noted that temperature T is only one underlying parameter driving the changes of these coefficients. Therefore, the 
auto-associative neural network with only one node in the bottleneck layer should be able to reproduce this training data set 
(see Figure 7). 

The auto-associative neural networks with different dimensions in the mapping and de-mapping layers are applied to this 
training data to determine the best network architecture. In general, the number of nodes in the mapping and de-mapping 
layers is set to be larger than that of the bottleneck layer ( 1M , 2M > d). However, there are no definitive rules for deciding 
the dimensions of the mapping and de-mapping layers. The complexity of the nonlinear functions, which the neural network 
represents, primary controls the number of nodes in the mapping and de-mapping layers. If too few nodes are specified in the 
mapping layers, the accuracy of the neural network might be poor. On the other hand, if too many mapping nodes are 
provided, the network will be prone to overfitting and will model the l stochastic nature of the data rather than the underlying 
functionalities. In practice, the available data might impose constraints on the number of nodes in the hidden layers if the 
number of training data sets is limited. Otherwise, explicit criteria trading off between the accuracy and the dimension of the 
hidden layers are often used. Two such criteria are Akaike’s Final Prediction Error (FPE) and An Information Theoretic 
Criterion (AIC) (Ljung, 1999): 

)/1()/1( NNNNeFPE tt −+=  (26) 

NNeAIC t /2]ln[ +=  (27) 

where dmMMdmNt +++++= ))(1( 21  is the total number of weights, lmN = is the number of points in the data, 

)2/( NEe = , and E  is the sum of squared errors for all entries in YY ˆ− . Minimization of these criteria identifies the 
number of nodes that are neither underparameterized nor overfitted. In this example, a neural network with 10 nodes in each 
mapping and de-mapping layer has minimized the two criteria on average, and employed for the subsequent novelty 
detection. The number and time of iterations are not reported here because the iterations depend on the training method and 
the initial conditions. However in most cases, less than 10,000 iterations were required before convergence. Several trainings 
with different initial conditions were required for a given architecture to assure that the global minimum had been achieved. 
Also, sigmoidal transfer functions were used in all hidden layers as well as the output layer so that the outputs were bounded 



in the range [-1, 1]. The networks employed in this study are conventional feedforward networks and are trained by a 
Levenberg-Marquardt version of backpropagation. It is reported that the Levenberg-Marquardt algorithm is 10 to 100 times 
faster than the usual gradient descent method (Hagan and Menhaj, 1994). 

Although it is not presented in this paper, the difference between the original training data Y and the reconstructed data 
Ŷ  was negligible for most cases. If the neural network was successfully trained, the output of the bottleneck layer should be 
analogous to the unmeasured temperature T because the temperature is the only underlying intrinsic variable causing all the 
fluctuations in the extracted features. Figure 8 shows the relationship between the output of the bottleneck layer and 
temperature T. The bottleneck output is indeed closely related to the temperature: The relationship, although not linear, is 
monotonic and this is sufficient to reconstruct the input at the output layer. Therefore, this auto-associative neural network 
had in a sense revealed the unmeasured temperature embedded in this data set, and accomplished the desired data 
normalization. 
 

 

Figure 7: The neural network architecture for the hard disk drive example 
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Figure 8: Correlation between temperature and the output in the bottleneck layer for the computer hard disk example 

 
 

6. EXPERIMENTAL EXAMPLE 
 
6.1. Description of the Test Structure 
 

An 8-DOF system has been designed and constructed to study the effectiveness of the proposed damage detection procedure. 
The system is formed with eight translating masses connected by springs. The system employed in this study is shown in 
Figure 9. Each mass is an aluminum disc of 25.4 mm thick and 76.2 mm in diameter with a center hole. The hole is lined 
with a Teflon bushing. There are small steel collars on each end of the discs (Figure 10). The masses slide on a highly 
polished steel rod that supports the masses and constrains them to translate only along the rod. The masses are fastened 
together with coil springs epoxied to the collars that are, in turn, bolted to the masses. 
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2â2â
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DOFs, springs and masses are numbered from the right end of the system, where the excitation is applied, to the left end 
as shown in Figure 9. The nominal value of mass 1 (m1) is 559.3 grams. Again, this mass is located at the right end where the 
shaker is attached. m1 is greater than the others because of the hardware needed to attach the shaker. All the other masses 
(m2 through m8) are 419.4 grams. The spring constant for all the springs is 56.7 kN/m for the initial condition. Damping in 
the system is caused primarily by Coulomb friction. Every effort is made to minimize the friction through careful alignment 
of the masses and springs. A common commercial lubricant is applied between the Teflon bushings and the support rod. 
Measurements made during damage identification tests were the excitation force applied to m1 and the acceleration responses 
of all masses. Random excitation was accomplished with a 215 N peak force electro-dynamic shaker (Figure 9). The root 
mean square (RMS) amplitude level of the input was varied from 3 to 7 V. A Hewlett-Packard 3566A system was employed 
for data acquisition. A laptop computer was used for data storage and for controlling the data acquisition system. The force 
transducer used had a nominal sensitivity of 22.48 mv/N, and the accelerometers had a nominal sensitivity of 10 mv/g. The 
specifications for the data acquisition are summarized in Table 1. 

The undamaged configuration of the system is the state for which all springs are identical and have a linear spring 
constant. Nonlinear damage is defined as an occurrence of impact between two adjacent masses. Damage is simulated by 
placing a bumper between two adjacent masses so that the movement of one mass is limited relative to the other mass. Figure 
10 shows the hardware used to simulate nonlinear damage. When one end of a bumper, which is placed on one mass, hits the 
other mass, impact occurs. This impact simulates damage caused by the impact from the closing of a crack during vibration. 
The degree of damage can be controlled by changing the amount of relative motion permitted before contact, and changing 
the hardness of the bumpers on the impactors. For all damage cases presented, the initial clearance is set to zero. 

 

  
Figure 9: An 8-DOF system attached to a shaker with 

accelerometers mounted on each mass  
Figure 10: A typical bumper used to simulate nonlinear 

damage 
 
For the localization study of nonlinear damage, three different damage scenarios are examined varying damage locations 

and input force levels. This bumper is installed between m1-m2, m5-m6, and m7-m8 for damage cases 1, 2, and 3, 
respectively. For each damage case, 5 sets of time histories are recorded at an individual input level and the input force varies 
from 3 to 4, 5, 6, and 7 V (except damage case 3, where the input voltage varies from 4 V to 7 V). Therefore, a total of 25, 
25, and 20 time series are recorded for damage cases 1, 2, and 3, respectively. For the undamaged case, 15 sets of time 
histories are recorded at an individual input level producing a total of 75 time series. Table 2 summarizes the time series 
studied in this example.  

Table 1: Specifications for data acquisition 
Time step 0.001953 sec. 
Sampling rate 512 Hz 
Time period 8 sec. 
Frequency resolution 0.125Hz 
Number of data points 4096 
Filtering Uniform window 
Nyquist frequency 256Hz 

Collar 

Spring 

Aluminum 
mass 

Mass 1 Mass 8 

Bumper 



Table 2: List of time series employed in the experimental study 
Case Description Input level Data # per input Total data # 

0 No bumper 3, 4, 5, 6, 7 V 15 sets 75 sets 
1 Bumper between m1-m2 3, 4, 5, 6, 7 V 5 sets 25 sets 
2 Bumper between m5-m6 3, 4, 5, 6, 7 V 5 sets 25 sets 
3 Bumper between m7-m8 4, 5, 6, 7 V 5 sets 20 sets 

 
6.2. Training of the Auto-Associative Neural Network 
 

For this 8-DOF system, the change of excitation levels is the only operation variation. The auto-associative network is first 
trained for each DOF to reveal the underlying relationship between the AR-ARX coefficients and the unknown excitation 
levels. It should be noted that an individual neural network is constructed for each DOF. 9 time series out of 15 time series 
from each input level of the undamaged case are used to train the network. In other words, 45 time series (=9 time series from 
each input level ×  5 input levels) out of the total 75 time series sets are used for training and the remaining 30 time series are 
used for validation and testing. From the 45 time series, the coefficients of the AR-ARX model are computed assuming 
AR(30) and ARX(5,5) models. That is, the training data set for the network consists of 45 observations with 10 input 
variables (m=10 and l=45). The input variables are again scaled so that each variable has zero mean and unity standard 
deviation.  

Because the excitation level is the main underlying parameter driving the changes of these coefficients, the auto-
associative neural network with only one node in the bottleneck layer is again used to reproduce this training data set (Figure 
11). Following the model selection procedures described in Section 5.2, a neural network with 3 nodes in each mapping and 
de-mapping layer has minimized the FPE and AIC criteria on average, and employed for the subsequent SPRT analysis. 
Again, sigmoidal transfer functions were used in all layers except the output layer, which had a pure linear transfer function. 
In this example, the Levenberg-Marquardt backpropagation with Bayesian regularization (Mackey, 1992) and early stopping 
(Sarle, 1995) is employed to avoid overfitting the training data set and to improve the generalization of the network. 

Figure 12 shows a typical relationship between the output of the bottleneck layer and the excitation level obtained from 
the network corresponding to m2. Here, the output of the bottleneck layer is an averaged output of 15 times series 
corresponding to each input level. The bottleneck output is closely related to the excitation level: the relationship is linear and 
this is sufficient to reconstruct the input at the output layer. Similar results are also observed from the networks associated 
with the other measurement points. Next, the residual error )(txε  is computed from Equation (3) using the initially estimated 
AR-ARX coefficient iα  and jβ , and the other residual error )(tyε  is obtained from Equation (10) using the neural network 

prediction iα̂  and jβ̂ . 
 

 
Figure 11: The neural network architecture for the 8-DOF spring-mass system 
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Figure 12: Correlation between the excitation level and the output in the bottleneck layer at mass 2 

 
6.3. Diagnosis Results 
 

Based on the prediction errors, )(txε  and )(tyε , computed in the previous step, a simple hypothesis test shown in Equation 
(11) is performed using the SPRT for an undamaged (case 0) and three damage cases (cases 1-3). For the SPRT analysis, the 
upper bounds of α  and β  are set both to 0.001. Furthermore, the two decision boundaries, oσ  and 1σ , are set to 
1.3 )( xεσ and 1.4 )( xεσ , respectively. Again, the establishment of these decision boundaries requires the measurement of 
data sets from a wide range of undamaged cases as well as from a few damage cases. That is, the lower bound should be 
determined so that most of features extracted from undamaged cases do not produce false positive indication of damage, and 
the upper bound should be selected so that the damage of interest can be detected. Because the sensitivity of the extracted 
features to damage is structure-dependent, time series signals from a few damage cases will allow for a better establishment 
of the upper threshold value. 

Table 3 presents the standard deviation ratio )(/)( xy εσεσ  for each DOF and all studied damage cases. Each 
)(/)( xy εσεσ  values shown in Table 3 are mean values of 75, 25, 25, 20 sample standard deviation ratios for damage cases 0, 

1, 2, 3, respectively. If a bumper were introduced at m1, the largest increase in the standard deviation ratio would be expected 
at the nearest measurement point, m1 However, as shown in Table 3, no significant increase in )(/)( xy εσεσ  was observed at 
m1. Instead, the )(/)( xy εσεσ  value in the next adjacent measurement point m2 was significantly increased to 1.5322 on 
average. It is speculated that, because m1 is rigidly connected to the shaker by a rod, the response at this point is masked by 
the direct influence of the random input. When the bumper was placed at m5, the average )(/)( xy εσεσ  value in m5 
increased to 1.7309, marking the largest increase among all masses (see the fourth row of Table 3). A similar result is 
observed when the bumper is placed at m7 (see the fifth row of Table 3). A simple chart of the )(/)( xy εσεσ  values with 
respect to measurement points reveals the approximate locations of nonlinear damage as well as the existence of the damage.  

Next, the SPRT is conducted for all test data, and the diagnosis results are summarized in Table 4. The entries in Table 4 
show the rejection number of the null hypothesis 0H : )( yεσ ≤ 1.3 )( xεσ  out of all hypothesis tests. For example, when the 
hypothesis test is conducted at m2 on 75 time series data sets obtained from the undamaged case, the null hypothesis is 
always accepted for 75 cases (0/75: under “m2” column and “no bumper” row in Table 4). For all damage cases, the number 
of rejection reaches its peak value near the actual damage location.  

To investigate the effectiveness of the data normalization, a false positive study is conducted by training the auto-
associative neural network with only subsets of the 45 time series originally used for training the network. It is observed that 
the amplification of the input force introduces amplitude-dependent nonlinearity. This input amplification alone might cause 
a noticeable increase in the standard deviation ratio )(/)( xy εσεσ  without the installation of a bumper. The findings of this 
false positive study are summarized in Table 5. Each entry of Table 5 shows the numbers of false positive indication of 
damage when the SPRT is applied to times series from the undamaged structure. For example, 16/75 under the column of 
“m3” and the row of “3 V” means that there are 16 false positive indications of damage at m3 out of all tested 75 time series, 



when only 9 time histories from the excitation level of 3 V are used for training the network. For comparison, when the 
network is trained with data from all excitation levels, there is no false positive indication of damage as shown in the last row 
of Table 5. It should be noted that the measurement of these ambient conditions is often difficult, and they are not necessarily 
needed for the presented approach. The results presented in Table 5 indicate that the success of the proposed data 
normalization relies on the appropriate inclusion of training data sets spanning a wide range of operational and environmental 
conditions to capture the functional dependence. 
 

Table 3: The ratio of standard deviations )(/)( xy εσεσ  for one undamaged and three damaged cases 

Degree of freedom Bumper Location m1 m2 m3 m4 m5 m6 m7 m8 
No Bumper 1.0021 1.0061 1.0185 1.0106 1.0213 1.0278 1.0226 1.0230 

Between m1-m2 1.0152 1.5322 1.1246 1.0695 1.0461 1.0373 1.0308 1.0287 
Between m5-m6 1.0024 1.0116 1.0290 1.0292 1.7309 1.2194 1.0510 1.0347 
Between m7-m8 1.0018 1.0141 1.0347 1.0186 1.0689 1.1765 1.7158 1.3566 

*Each )(/)( xy εσεσ  ratio presented is the average value of all input levels. That is, the averages of 75, 25, 25, 
and 20 individual )(/)( xy εσεσ  values measured under different input levels are presented. 

 
Table 4: Results of the SPRT analysis for 0H : )( yεσ ≤ 1.3 )( xεσ  and 1H : )( yεσ ≥  1.4 )( xεσ  

Degree of freedom Bumper Location m1 m2 m3 m4 m5 m6 m7 m8 
No Bumper  0/75* 0/75 0/75 0/75 0/75 0/75 0/75 0/75 

Between m1-m2 0/25 25/25 0/25 0/25 0/25 0/25 0/25 0/25 
Between m5-m6 0/25 0/25 0/25 0/25 23/25 1/25 0/25 0/25 
Between m7-m8 0/20 0/20 0/20 0/20 0/20 2/20 20/20 16/20 

*Each entry shows the numbers of rejecting the null hypothesis. For example, 0/75 means that the null hypothesis 
is rejected 0 times out of all tested 75 time series. The SPRT is conducted with α  and β = 0.001. 

 
Table 5: Effect of the proposed data normalization on false positive indication of damage  

Degree of freedom Train data sets m1 m2 m3 m4 m5 m6 m7 m8 
 3 V*   0/75** 0/75 16/75 0/75 0/75 28/75 43/75 0/75 
4 V 0/75 6/75 0/75 0/75 0/75 4/75 0/75 4/75 
5 V 0/75 0/75 0/75 0/75 0/75 16/75 0/75 0/75 
6 V 0/75 0/75 0/75 0/75 0/75 0/75 5/75 11/75 
7 V 0/75 0/75 0/75 0/75 9/75 4/75 0/75 69/75 

3 –7 V 0/75 0/75 0/75 0/75 0/75 0/75 0/75 0/75 
*The voltage presented denotes the data set used for training the auto-associative neural network. “3 V” indicates 
that 9 time histories obtained only from the RMS excitation level of 3 V are used for training. 
**Each entry shows the numbers of false positive indication of damage when SPRT is applied to times series from 
the undamaged case. For example, 0/75 means that there is no false positive indication of damage out of all tested 75 
time series.  

 
 

7. CONCLUSIONS 
 
This paper presents a statistical damage classification technique for structural health monitoring, explicitly taking into 
account the effects of changing environmental and operational conditions on measured vibration signals. A unique integration 
of the AR-ARX time prediction model, the auto-associative neural network, and the sequential probability ratio test is 
developed to discriminate the changes of system responses caused by ambient operational conditions from those caused by 
structural damage. The objective of the present damage identification technique is to eschew the physics-based model 
approaches such as finite element analysis, and therefore pave the way for signal-based techniques applicable to systems of 



arbitrary complexity. However, the present damage classifier provides an indication only about the presence of damage in a 
system of interest. This method does not necessarily give information about the location and extent of the damage. That is, 
the damage classifier only identifies if a new feature differs from previously obtained features in some statistically significant 
respect. Although the damage assessment problem can be posed with several levels of complexity, the detection of damage 
presence is arguably the most important step. Once the existence of damage is confirmed, the system can be taken out of 
service and subjected to detailed inspection to locate and quantify damage.  

First, the data normalization technique using the auto-associative neural network is validated using numerical data 
generated from a computer hard disk model. Then, the proposed approach is applied to vibration signals measured from an 
eight degree-of-freedom spring-mass system. Results indicate that the incorporation of the auto-associative network with 
time series analysis and statistical inference enables one to detect damage even when the system exhibits a range of normal 
operational and environmental conditions. The development presented here will allow the some progress in in-service 
monitoring of aerospace, automotive, civil, and mechanical systems, which are subject to various operational and 
environmental conditions. Such a monitoring system will be less prone to false-positive indication of damage. To minimize 
this false indication of damage and develop a more robust monitoring system, the training data set need to be collected over a 
wide range of environmental and operational conditions of the system. Otherwise, the proposed damage classifier cannot 
make any definite statement regarding the existence of damage because unusual operational conditions can also have similar 
effects on the monitoring system. Before the proposed approach can be used with confidence on real structures, several issues 
need to be addressed. Although the dimension of the bottleneck layer is known a prior in the examples presented, this layer 
size should also be estimated based on model order selection techniques similar to the ones presented in this paper. Often the 
node numbers of this layer could be initially estimated either by grasping the main environmental and operational factors 
based on observations and engineering judgment or by performing simple linear principal component analysis. The more 
analytical approach to the establishment of the decision boundaries for the sequential probability ratio test also needs further 
investigation considering the degree of damage that is statistically significant.  
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