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The process of implementing a damage identification strategy for aerospace, civil and
mechanical engineering infrastructure is referred to as structural health monitoring
(SHM). Here, damage is defined as changes to the material and/or geometric properties
of these systems, including changes to the boundary conditions and system connectivity,
which adversely affect the system’s performance. A wide variety of highly effective local
non-destructive evaluation tools are available for such monitoring. However, the
majority of SHM research conducted over the last 30 years has attempted to identify
damage in structures on a more global basis. The past 10 years have seen a rapid increase
in the amount of research related to SHM as quantified by the significant escalation in
papers published on this subject. The increased interest in SHM and its associated
potential for significant life-safety and economic benefits has motivated the need for this
theme issue.

This introduction begins with a brief history of SHM technology development. Recent
research has begun to recognize that the SHM problem is fundamentally one of the
statistical pattern recognition (SPR) and a paradigm to address such a problem is
described in detail herein as it forms the basis for organization of this theme issue. In the
process of providing the historical overview and summarizing the SPR paradigm, the
subsequent articles in this theme issue are cited in an effort to show how they fit into this
overview of SHM. In conclusion, technical challenges that must be addressed if SHM is to
gain wider application are discussed in a general manner.
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1. Introduction

In the most general terms, damage can be defined as changes introduced into a
system that adversely affect its current or future performance. Implicit in this
definition is the concept that damage is not meaningful without a comparison
between two different states of the system, one of which is assumed to represent
the initial, and often undamaged, state. This theme issue is focused on the study
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of damage identification in structural and mechanical systems. Therefore, the
definition of damage will be limited to changes to the material and/or geometric
properties of these systems, including changes to the boundary conditions and
system connectivity, which adversely affect the current or future performance of
these systems.

In terms of length-scales, all damage begins at the material level. Although not
necessarily a universally accepted terminology, such damage is referred to as a
defect or flaw and is present to some degree in all materials. Under appropriate
loading scenarios, the defects or flaws grow and coalesce at various rates to cause
component and then system-level damage. The term damage does not necessarily
imply a total loss of system functionality, but rather that the system is no longer
operating in its optimal manner. As the damage grows, it will reach a point
where it affects the system operation to a point that is no longer acceptable to the
user. This point is referred to as failure. In terms of time-scales, damage can
accumulate incrementally over long periods of time such as that associated with
fatigue or corrosion damage accumulation. On relatively shorter time-scales,
damage can also result from scheduled discrete events such as aircraft landings
and from unscheduled discrete events such as enemy fire on a military vehicle or
natural phenomena hazards such as earthquakes.

The process of implementing a damage identification strategy for aerospace,
civil and mechanical engineering infrastructure is referred to as structural health
monitoring (SHM). This process involves the observation of a structure or
mechanical system over time using periodically spaced measurements, the
extraction of damage-sensitive features from these measurements and the
statistical analysis of these features to determine the current state of system
health. For long-term SHM, the output of this process is periodically updated
information regarding the ability of the structure to continue to perform its
intended function in light of the inevitable aging and damage accumulation
resulting from the operational environments. Under an extreme event, such as an
earthquake or unanticipated blast loading, SHM is used for rapid condition
screening. This screening is intended to provide, in near real-time, reliable
information about system performance during such extreme events and the
subsequent integrity of the system. A more detailed description of SHM can be
found in Worden & Dulieu-Barton (2004).

Damage identification is carried out in conjunction with five closely related
disciplines that include SHM, condition monitoring (CM; Bentley & Hatch
2003), non-destructive evaluation (NDE; Shull 2002), statistical process control
(SPC; Montgomery 1997) and damage prognosis (DP; which is summarized
within this theme issue in Farrar & Lieven (2007); see also Farrar et al. (2003)).
Typically, SHM is associated with online–global damage identification in
structural systems such as aircraft and buildings. CM is analogous to SHM,
but addresses damage identification in rotating and reciprocating machinery,
such as those used in manufacturing and power generation. NDE is usually
carried out off-line in a local manner after the damage has been located. There
are exceptions to this rule, as NDE is also used as a monitoring tool for in situ
structures such as pressure vessels and rails. NDE is therefore primarily used for
damage characterization and as a severity check when there is a priori knowledge
of the damage location. SPC is process-based rather than structure-based and
uses a variety of sensors to monitor changes in a process, one cause of which can
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305An introduction to SHM
result from structural damage. Once damage has been detected, DP is used to
predict the remaining useful life of a system. This theme issue will primarily
address SHM and CM, and will conclude with an article that introduces the
damage prognosis problem.
(a ) Motivation for SHM technology development

Almost all private and government industries want to detect damage in their
products as well as in their manufacturing infrastructure at the earliest possible
time. Such detection requires these industries to perform some form of SHM and
is motivated by the potential life-safety and economic impact of this technology.
As an example, the semiconductor manufacturing industry is adopting this
technology to help minimize the need for redundant machinery necessary to
prevent inadvertent downtime in their fabrication plants. Such downtime can
cost these companies on the order of millions of dollars per hour. Aerospace
companies along with government agencies are investigating SHM technology for
identification of damage to the space shuttle control surfaces hidden by heat
shields. Clearly, such damage identification has significant life-safety impli-
cations. Also, there are currently no quantifiable methods to determine if
buildings are safe for reoccupation after a significant earthquake. SHM may one
day provide the technology that can be used to significantly minimize the
uncertainty associated with such post-earthquake damage assessments. The
prompt reoccupation of buildings, particularly those associated with manufactur-
ing, can significantly mitigate economic losses associated with major seismic
events. Finally, many portions of our technical infrastructure are approaching or
exceeding their initial design life. As a result of economic issues, these civil,
mechanical and aerospace structures are being used in spite of aging and the
associated damage accumulation. Therefore, the ability to monitor the health of
these structures is becoming increasingly important.

Most current structural and mechanical system maintenance is done in a time-
basedmode. As an example, missiles are retired after a set amount of captive-carry
hours on the wing of an aircraft. SHM is the technology that will allow the current
time-based maintenance philosophies to evolve into potentially more cost effective
condition-based maintenance philosophies. The concept of condition-based
maintenance is that a sensing system on the structure will monitor the system
response and notify the operator that damage has been detected. Life-safety and
economic benefits associated with such a philosophy will only be realized if the
monitoring system provides sufficient warning such that corrective action can be
taken before the damage evolves to a failure level. The trade-off associated with
implementing such a philosophy is that it requires amore sophisticatedmonitoring
hardware to be deployed on the system and it requires a sophisticated data analysis
procedure that can be used to interrogate the measured data.

Finally, many companies that produce high capital expenditure products, such
as airframes, jet engines and large construction equipment would like to move to a
business model where they lease this equipment as opposed to selling it. With
these models the company that manufactures the equipment would take on the
responsibilities for maintenance of that equipment. SHM has the potential to
extend the maintenance cycles and, hence, keep the equipment out in the field
where it can continue to generate revenues for the owner. Also, the equipment
Phil. Trans. R. Soc. A (2007)
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owners would like to base their lease fees on the amount of system life used up
during the lease time rather than on the current simple time-based lease fee
arrangements. Such a business model will not be realized without the ability to
monitor the damage initiation and evolution in the rental hardware.

(b ) Motivation for this theme issue

Directly reflecting the increased interest in this emerging technology, there
have been several new conferences developed in the last 8 years that focus
directly on SHM.1–4 Conferences related to the condition monitoring of rotating
machinery are much older.5,6 These conferences have shown that the topic of
SHM is of interest to a wide range of industries and government agencies. These
conferences have also shown that many technical disciplines must be integrated
to properly address the SHM problem. In addition, the first refereed journal
devoted specifically to SHM has recently been initiated.7 The proceedings of
these conferences as well as the extensive number of refereed journal articles
devoted to various aspects of SHM show that significant knowledge and
experiences have been gained through the reported studies. Therefore, this
Phil. Trans. R. Soc. A issue is devoted to this topic in an effort to provide the
engineering community with an up to date overview of SHM technology.
2. Brief historical overview

It is the authors’ speculation that damage identification, as determined by
changes in the dynamic response of systems, has been practiced in a qualitative
manner, using acoustic techniques (e.g. tap tests on train wheels), since modern
man has used tools. More recently, the development of quantifiable SHM
approaches has been closely coupled with the evolution, miniaturization and cost
reductions of digital computing hardware. In conjunction with these develop-
ments, SHM has received considerable attention in the technical literature and a
brief summary of the developments in this technology over the last 30 years is
presented below. Specific references are not cited, instead the reader is referred to
Doebling et al. (1996), Sohn et al. (2003) and Randall (2004a,b) for more detailed
summaries of this subject.

To date, the most successful application of SHM technology has been for CM of
rotating machinery. The rotating machinery application has taken an almost
exclusive non-model based approach to damage identification. The identification
process is based on pattern recognition applied to displacement, velocity or
acceleration time histories (or spectra) generally measured at a single point on the

1 The Fourth International Structural Health Monitoring Workshop, Palo Alto, CA, 2003.
2 The Sixth International Symposium on Nondestructive Evaluation of Aging Infrastructure, San
Diego, CA, 2003.
3 The Fifth International Conference on Damage Assessment of Structures, Southampton, UK, 2003.
4 The Second European SHM Workshop, Munich, Germany, 2004.
5 Condition Monitoring And Diagnostic Engineering Management, COMADEM, Cambridge, UK,
2004.
6 The 58th Meeting of the Society for Machinery Failure and Prevention Technology, Virginia,
Beach, VA, 2004.
7 Structural Health Monitoring, An International Journal, Sage Publications, London, UK.
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307An introduction to SHM
housing or shafts of themachinery during normal operating conditions and start up
or shutdown transients. Often this pattern recognition is performed only in a
qualitative manner based on a visual comparison of the spectra obtained from the
system at different times. Databases have been developed that allow specific types
of damage to be identified from particular features of the vibration signature. For
rotating machinery systems, the approximate damage location is generally known
making a single-channel fast Fourier transform analyser sufficient formost periodic
monitoring activities. Typical damage that can be identified includes loose or
damaged bearings, misaligned shafts and chipped gear teeth. Today, commercial
software integrated with measurement hardware is marketed to help the user
systematically apply this technology to the operating equipment. The success of
CM is due in part to (i) minimal operational and environmental variability
associatedwith this type ofmonitoring, (ii) well-defined damage types that occur at
known locations, (iii) large databases that include data from damaged systems, (iv)
well-established correlation between damage and features extracted from the
measured data, and (v) clear and quantifiable economic benefits that this
technology can provide. These factors have allowed this application of SHM to
havemade the transition from a research topic to industry practice several decades
ago resulting in comprehensive condition management systems such as the US
Navy’s Integrated Condition Assessment System.

During the 1970s and 1980s, the oil industry made considerable efforts to
develop vibration-based damage identification methods for offshore platforms.
This damage identification problem is fundamentally different from that of
rotating machinery because the damage location is unknown and because the
majority of the structure is not readily accessible for measurement. To
circumvent these difficulties, a common methodology adopted by this industry
was to simulate candidate damage scenarios with numerical models, examine the
changes in resonant frequencies that were produced by these simulated changes,
and correlate these changes with those measured on a platform. A number of
very practical problems were encountered including measurement difficulties
caused by platform machine noise, instrumentation difficulties in hostile
environments, changing mass caused by marine growth, varying fluid storage
levels, temporal variability of foundation conditions and the inability of wave
motion to excite higher vibration modes. These issues prevented adaptation of
this technology and efforts at further developing this technology for offshore
platforms were largely abandoned in the early 1980s.

The aerospace community began to study the use of vibration-based damage
identification during the late 1970s and early 1980s in conjunction with the
development of the space shuttle. This work has continued with current
applications being investigated for the National Aeronautics and Space
Administration’s space station and future reusable launch vehicle designs. The
shuttle modal inspection system (SMIS) was developed to identify fatigue damage
in components such as control surfaces, fuselage panels and lifting surfaces. These
areas were covered with a thermal protection system making them inaccessible
and, hence, impractical for conventional local non-destructive examination
methods. The SMIS has been successful in locating damaged components that
are covered by the thermal protection system. All orbiter vehicles have been
periodically subjected to SMIS testing since 1987. Space station applications have
primarily driven the development of experimental/analytical methods aimed at
Phil. Trans. R. Soc. A (2007)
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identifying damage to truss elements caused by space debris impact. These
approaches are based on correlating analytical models of the undamaged structure
with measured modal properties from both the undamaged and damaged
structures. Changes in stiffness indices as assessed from the two model updates
are used to locate and quantify the damage. Since themid-1990s, studies of damage
identification for composite materials have been motivated by the development of
a composite fuel tank for a reusable launch vehicle. The failure mechanisms, such
as delamination caused by debris impacts, and correspondingmaterial response for
composite fuel tanks are significantly different to those associated with metallic
structures. Moreover, the composite fuel tank problem presents challenges because
the sensing systems must not provide a spark source. This challenge has led to the
development of SHM based on fibre optic sensing systems. Boller & Buderath
(2007) provide a more detailed discussion of SHM applied to aerospace structures
in a subsequent article contained in this theme issue.

The civil engineering community has studied vibration-based damage assess-
ment of bridge structures and buildings since the early 1980s. Modal properties and
quantities derived from these properties, such as mode shape curvature and
dynamic flexibility matrix indices, have been the primary features used to identify
damage in bridge structures. Environmental and operating condition variability
presents significant challenges to the bridge monitoring application. The physical
size of the structure also presents many practical challenges for vibration-based
damage assessment. Regulatory requirements in Asian countries, which mandate
that the companies that construct the bridges periodically certify their structural
health, are driving current research and commercial development of bridge SHM
systems. In this theme issue, articles byBrownjohn (2007) andLynch (2007) discuss
further the applications of SHM to civil engineering infrastructure.

In summary, the review of the technical literature presented by Doebling et al.
(1996) andSohn et al. (2003) showsan increasingnumber of research studies related to
damage identification. These studies identify many technical challenges to the
adaptation of SHM that are common to all applications of this technology. These
challenges include the development of methods to optimally define the number and
location of the sensors; identification of the features sensitive to small damage levels;
the ability to discriminate changes in these features caused by damage from those
caused by changing environmental and/or test conditions; the development of
statistical methods to discriminate features from undamaged and damaged
structures; and performance of comparative studies of different damage identification
methods applied to common datasets. These topics are currently the focus of various
research efforts bymany industries including defence, civil infrastructure, automotive
and semiconductor manufacturing where multi-disciplinary approaches are being
used to advance the current capabilities of SHM and CM.
3. The statistical pattern recognition paradigm

There are many ways by which one can organize a discussion of SHM. The
authors have chosen to follow the one described in a previous Phil. Trans. R. Soc. A
article (Farrar et al. 2001) that defines the SHM process in terms of a four-step
statistical pattern recognition paradigm. This following four-step process includes:
Phil. Trans. R. Soc. A (2007)
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(i) operational evaluation,
(ii) data acquisition, normalization and cleansing,
(iii) feature selection and information condensation, and
(iv) statistical model development for feature discrimination.

All papers published in the fields of SHM and CM address some parts of this
paradigm, but the number of studies that address all portions of the paradigm is
much more limited.
(a ) Operational evaluation

Operational evaluation attempts to answer four questions regarding the
implementation of a damage identification capability.

(i) What are the life-safety and/or economic justification for performing SHM?
(ii) How is damage defined for the system being investigated and, for multiple

damage possibilities, which cases are of the most concern?
(iii) What are the conditions, both operational and environmental, under which

the system to be monitored functions?
(iv) What are the limitations on acquiring data in the operational environment?

Operational evaluation begins to set the limitations on what will be monitored
and how the monitoring will be accomplished. This evaluation starts to tailor the
damage identification process to features that are unique to the system being
monitored and tries to take advantage of unique features of the damage that is to
be detected.
(b ) Data acquisition, normalization and cleansing

The data acquisition portion of the SHM process involves selecting the excitation
methods, the sensor types, number and locations, and the data acquisition/
storage/transmittal hardware. Again, this process will be application specific.
Economic considerations will play a major role in making these decisions. The
interval at which the data should be collected is another consideration that must
be addressed.

As data can be measured under varying conditions, the ability to normalize the
data becomes very important to the damage identification process. As it applies to
SHM, data normalization is the process of separating changes in sensor reading
caused by damage from those caused by varying operational and environmental
conditions. One of the most common procedures is to normalize the measured
responses by the measured inputs.When environmental or operational variability is
an issue, the need can arise to normalize the data in some temporal fashion to
facilitate the comparison of data measured at similar times of an environmental or
operational cycle. Sources of variability in the data acquisition process and with the
systembeingmonitored need to be identifiedandminimized to the extent possible. In
general, not all sources of variability can be eliminated. Therefore, it is necessary to
make the appropriate measurements such that these sources can be statistically
quantified. Variability can arise from changing environmental and test conditions,
changes in the data reduction process and unit-to-unit inconsistencies.
Phil. Trans. R. Soc. A (2007)
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Data cleansing is the process of selectively choosing data to pass on to or reject
from the feature selection process. The data cleansing process is usually based on
the knowledge gained by individuals directly involved with the data acquisition. As
an example, an inspection of the test set-up may reveal that a sensor was loosely
mounted and, hence, based on the judgment of the individuals performing the
measurement, this set of data or the data from that particular sensor may be
selectively deleted from the feature selection process. Signal processing techniques
such as filtering and resampling can also be thought of as data cleansing procedures.

Finally, it should be noted that the data acquisition, normalization and cleansing
portion of the SHM process should not be static. Insight gained from the feature
selection process and the statistical model development process will provide
information regarding changes that can improve the data acquisition process. A
number of articles contained in this theme issue specifically address various aspects
of the data acquisition and data normalization issues as they apply to SHM (Lynch
2007; Sohn 2007; Park & Inman 2007; Todd et al. 2007).
(c ) Feature extraction and information condensation

The area of the SHM process that receives the most attention in the technical
literature is the identification of data features that allows one to distinguish
between the undamaged and damaged structure. As such, numerous articles in this
theme issue are devoted to the feature extraction portion of SHM (Fassois &
Sakellariou 2007; Friswell 2007; Mal et al. 2007; Staszewski & Robertson 2007).
Inherent in this feature selection process is the condensation of the data. The best
features for damage identification are, again, application specific.

One of the most common feature extraction methods is based on correlating
measured system response quantities, such as vibration amplitude or frequency, with
the first-hand observations of the degrading system. Another method of developing
features for damage identification is to apply engineered flaws, similar to ones
expected in actual operating conditions, to systems and develop an initial
understanding of the parameters that are sensitive to the expected damage. The
flawed system can also be used to validate that the diagnostic measurements are
sensitive enough to distinguish between features identified from the undamaged and
damaged system. The use of analytical tools such as experimentally validated finite
element models can be a great asset in this process. In many cases, the analytical
tools are used to perform numerical experiments where the flaws are introduced
through computer simulation. Damage accumulation testing, during which
significant structural components of the system under study are degraded by
subjecting them to realistic loading conditions, can also be used to identify
appropriate features. This process may involve induced-damage testing, fatigue
testing, corrosion growth or temperature cycling to accumulate certain types of
damage in an accelerated fashion. Insight into the appropriate features can be gained
from several types of analytical and experimental studies as described above and is
usually the result of information obtained from some combination of these studies.

The operational implementation and diagnostic measurement technologies
needed to perform SHM produce more data than traditional uses of structural
dynamics information. A condensation of the data is advantageous and necessary
when comparisons of many feature sets obtained over the lifetime of the structure
are envisioned. Also, because data will be acquired from a structure over an
Phil. Trans. R. Soc. A (2007)
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extended period of time and in an operational environment, robust data reduction
techniques must be developed to retain feature sensitivity to the structural changes
of interest in the presence of environmental and operational variability. To further
aid in the extraction and recording of quality data needed to perform SHM, the
statistical significance of the features should be characterized and used in the
condensation process.
(d ) Statistical model development

The portion of the SHM process that has received the least attention in the
technical literature is the development of statistical models for discrimination
between features from the undamaged and damaged structures. Statistical model
development is concerned with the implementation of the algorithms that operate
on the extracted features to quantify the damage state of the structure. The
algorithms used in statistical model development usually fall into three categories.
When data are available from both the undamaged and damaged structure, the
statistical pattern recognition algorithms fall into the general classification referred
to as supervised learning. Group classification and regression analysis are categories
of the supervised learning algorithms. Unsupervised learning refers to algorithms
that are applied to data not containing examples from the damaged structure.
Outlier or novelty detection is the primary class of algorithms applied in
unsupervised learning applications. All of the algorithms analyse statistical
distributions of the measured or derived features to enhance the damage
identification process.

The damage state of a system can be described as a five-step process along the
lines of the process discussed in Rytter (1993) to answer the following questions.

(i) Existence. Is there damage in the system?
(ii) Location. Where is the damage in the system?
(iii) Type. What kind of damage is present?
(iv) Extent. How severe is the damage?
(v) Prognosis. How much useful life remains?

Answers to these questions in the order presented represent increasing
knowledge of the damage state. When applied in an unsupervised learning
mode, statistical models are typically used to answer questions regarding the
existence and location of damage. When applied in a supervised learning mode
and coupled with analytical models, the statistical procedures can be used to
better determine the type of damage, the extent of damage and remaining
useful life of the structure. The statistical models are also used to minimize
false indications of damage. False indications of damage fall into two
categories: (i) false-positive damage indication (indication of damage when
none is present) and (ii) false-negative damage indication (no indication of
damage when damage is present). Errors of the first type are undesirable, as
they will cause unnecessary downtime and consequent loss of revenue as well
as loss of confidence in the monitoring system. More importantly, there are
clear safety issues if misclassifications of the second type occur. Many pattern
recognition algorithms allow one to weigh one type of error above the other;
this weighting may be one of the factors decided at the operational evaluation
Phil. Trans. R. Soc. A (2007)
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stage. Articles appearing within this theme issue that focus on the statistical
modelling portion of the SHM process include Hayton et al. (2007), Sohn
(2007) and Worden & Manson (2007).
4. Challenges for SHM

The basic premise of SHM feature selection is that damage will significantly
alter the stiffness, mass or energy dissipation properties of a system, which, in
turn, alter the measured dynamic response of that system. Although the basis
for feature selection appears intuitive, its actual application poses many
significant technical challenges. The most fundamental challenge is the fact
that damage is typically a local phenomenon and may not significantly
influence the lower-frequency global response of structures that is normally
measured during system operation. Stated another way, this fundamental
challenge is similar to that in many engineering fields where the ability to
capture the system response on widely varying length- and time-scales, as is
needed to model turbulence or to develop phenomenological models of energy
dissipation, has proven difficult.

Another fundamental challenge is that in many situations feature selection and
damage identification must be performed in an unsupervised learning mode. That
is, data from damaged systems are not available. Damage can accumulate over
widely varying time-scales, which poses significant challenges for the SHM sensing
system. This challenge is supplemented by many practical issues associated with
making accurate and repeatable measurements over long periods of time at a
limited number of locations on complex structures often operating in adverse
environments.

Finally, a significant challenge for SHM is to develop the capability to define the
required sensing system properties before field deployment and, if possible, to
demonstrate that the sensor system itself will not be damaged when deployed in the
field. If the possibility of sensor damage exists, it will be necessary to monitor the
sensors themselves. This monitoring can be accomplished either by developing
appropriate self-validating sensors or by using the sensors to report on each other’s
condition. Sensor networks should also be ‘fail-safe’. If a sensor fails, the damage
identification algorithms must be able to adapt to the new network. This adaptive
capability implies that a certain amount of redundancy must be built into the
sensor network.

In addition to the challenges described above, there are other non-technical
issues that must be addressed before SHM technology can make the transition
from a research topic to actual practice. These issues include convincing
structural system owners that the SHM technology provides an economic
benefit over their current maintenance approaches and convincing regulatory
agencies that this technology provides a significant life-safety benefit. All these
challenges lead to the current state of SHM technology, where outside of
condition monitoring for rotating machinery applications SHM remains a
research topic that is still making the transition to field demonstrations and
subsequent field deployment. There are lots of ongoing and new structural
monitoring activities, but these systems have been put in place without a pre-
defined damage to be detected and without the corresponding data
Phil. Trans. R. Soc. A (2007)
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interrogation procedure. As such, these monitoring activities do not represent
a fully integrated hardware/software SHM system with pre-defined damage
identification goals.
5. Theme issue organization

This theme issue has organized the articles in the context of statistical pattern
recognition paradigm. It is the authors’ opinion that all studies that have been
published in this field address one or more parts of this paradigm. Articles have
been solicited that specifically address parts 2–4 of the paradigm. In addition, a
group of three articles have been included that summarize current applications of
this technology to machinery monitoring, aerospace structures and civil
infrastructure. This theme issue concludes with an article on damage prognosis,
which is the prediction of a system’s remaining life given the current assessment of
structural health and some estimate of future loading environments. Damage
prognosis has just recently emerged as a topic of large-scale, multi-disciplinary
research efforts.

The articles contained herein attempt to strike a balance between providing an
overview of the subject matter (including issues, challenges, current limitations and
successes associated with the respective technology) while showing some specific
applications and results. Throughout the issue, emphasis will be placed on the need
to take an integrated approach to the development of SHM solutions by coupling
the measurement hardware portions of the problem directly with the data
interrogation algorithms.
6. Concluding comments

The development of robust SHM technology has many elements that make it a
potential ‘grand challenge’ for the engineering community. First, almost every
industry wants to detect damage in its structural and mechanical infrastructure at
the earliest possible time. Industries’ desire to perform such monitoring is based on
the tremendous economic and life-safety benefits that this technology has the
potential to offer. However, as previously mentioned with the exception of rotating
machinery condition monitoring, there are few examples of where this technology
has made the transition from research to practice.

Significant future developments of this technology will, in all likelihood, come
by way of multi-disciplinary research efforts encompassing fields such as
structural dynamics, signal processing, motion and environmental sensing
hardware, computational hardware, data telemetry, smart materials and
statistical pattern recognition, as well as other fields yet to be defined. These
topics are the focus of significant discipline-specific research efforts, and it is the
authors’ speculation that to date not all technologies from these fields that are
relevant to the SHM problem have been explored by the SHM research
community. Furthermore, there are few efforts that try to advance and
integrate these technologies with the specific focus of developing SHM solutions.
Without such a focus in mind, these technologies may not evolve in a manner
that is not necessarily optimal for solving the SHM problem. Finally, the
problem of global SHM is significantly complex and diverse that it will not be
Phil. Trans. R. Soc. A (2007)
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solved in the immediate future. Like so many other technology fields,
advancements in SHM will most likely come in small increments requiring
diligent, focused and coordinated research efforts over long periods of time.
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