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This paper concludes the theme issue on structural health monitoring (SHM) by
discussing the concept of damage prognosis (DP). DP attempts to forecast system
performance by assessing the current damage state of the system (i.e. SHM), estimating
the future loading environments for that system, and predicting through simulation and
past experience the remaining useful life of the system. The successful development of a
DP capability will require the further development and integration of many technology
areas including both measurement/processing/telemetry hardware and a variety of
deterministic and probabilistic predictive modelling capabilities, as well as the ability to
quantify the uncertainty in these predictions. The multidisciplinary and challenging
nature of the DP problem, its current embryonic state of development, and its
tremendous potential for life-safety and economic benefits qualify DP as a ‘grand
challenge’ problem for engineers in the twenty-first century.
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1. Introduction

As structural health monitoring (SHM) technology evolves and matures, it will
be integrated into a more comprehensive process referred to a Damage Prognosis
(DP). It is defined as the estimate of an engineered system’s remaining useful life
(Farrar et al. 2003). This estimate is based on the output of models that develop
behavioural predictions: by coupling information from usage monitoring;
SHM; past, current and anticipated future environmental and operational
conditions; the original design assumptions regarding loading and operational
environments; and previous component and system level testing and mainten-
ance. Also, ‘softer’ information such as user ‘feel’ for how the system is
responding will be used to the greatest extent possible when developing DP
solutions. In other words, DP attempts to forecast system performance by
measuring the current state of the system (i.e. SHM), estimating the future
loading environments for that system, and then predicting through simulation
and past experience the remaining useful life of the system. It is important
therefore to distinguish between usage monitoring and health monitoring.
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– Usage monitoring: the process of acquiring operational loading data from a
structure or system, which preferably includes a measure of environmental
conditions (e.g. temperature and moisture) and operational variables such as
mass or speed.

– Health monitoring: the process of identifying the presence and quantifying the
extent of damage in a system based on information extracted from the
measured system response.

In practice both techniques are required for DP, as future life predictions are a
function of loads and performance of the structure or system as well as its current
condition. Such predictions will be probabilistic in nature. This article
summarizes motivations for the development of a DP capability and will discuss
the requisite components of a general DP process. This discussion will show how
SHM fits into the DP process and concludes by identifying some of the key
emerging technologies that will have to be coupled with SHM to obtain a robust
DP capability.
2. Motivation for damage prognosis

As with SHM, the interest in DP solutions is based on this technology’s
tremendous potential for life-safety and/or economic benefits. DP has applications
to almost all engineered structures and mechanical systems including those
associated with all types of defence hardware, civil infrastructure, manufacturing
equipment and commercial aerospace systems. As an example, airframe and jet
engine manufacturers are moving to a business model where they lease their
hardware to the user, through so-called ‘power by the hour’ arrangements.
Increased profits are then realized by having the ability to assess damage and
predict when the damage will reach some critical level that will require corrective
action. With such predictions, the owners can better plan their maintenance
schedule and optimize the amount of time the hardware is available for leasing,
which in turn optimizes the revenue generating potential of these assets. In
addition, manufacturers of other large capital expenditure equipment such as
earth moving equipment for mining operations would like to move to a business
model, whereby they lease the equipment based on the portion of its life that is
used rather than on a time-based leasing arrangement. Such a business model
requires the ability to monitor the system’s response and predict the damage
accumulation during a lease interval as a function of the failure damage level.

A distinction that should be made for aircraft is the differing requirements
for structure, power plant and systems. For each category, the support schedule
specifies maintenance specific items (MSIs) and safety specific items (SSIs).
These are specific components that require regular scheduled inspection to
avoid either operational disruption or loss of safety. The selection of monitored
components is further complicated by adjacent component failures, an example
of which is turbine fan-blade-off (FBO). An occurrence of FBO in flight causes
an out of balance in the engine; however, despite powering down the engine, the
aerodynamic loads cause the fan assembly to ‘windmill’. Therefore, the
outcome of FBO is forced vibration through the whole airframe, so even
though the prognostic sensor system may adequately describe the behaviour of
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the engine, the airframe will have absorbed additional fatigue loading without
localized monitoring. Although the focus of prognostic methods has been on
power plant and structural components as discrete systems, the FBO example
highlights the increasing importance of taking a ‘multi-component’ level
approach to DP. However, the sophistication and scope of such an approach
currently remains an intractable issue. A further consideration is the treatment
of ‘systems’—rather than structural and power plant components. Aircraft
systems may take the form of data networks, printed circuit boards or recursive
(self-learning) software. These examples are typical of the challenges presented
for systems prognostics. While the strategy for structural DP has a defined road
map, many of the issues facing aircraft systems are still to be resolved. The
importance of this area of DP should not be underestimated as for civil aircraft,
over the next 10 years, the cost of the system elements will rise to 50% of the
purchase cost, while for military platforms the figure will be closer to two-thirds
of the total cost.

For civil infrastructure, there is a need for prognosis of structures (e.g. bridges
and high-rise buildings) subjected to large-scale discrete events such as
earthquakes. As an example, some buildings subjected to the 1995 Kobe
earthquake were evaluated for 2 years before reoccupation. Clearly, there is a
need to perform more timely and quantified structural condition assessments and
then confidently predict how these structures will respond to future loading such
as the inevitable aftershocks that occur following a major seismic event. For
manufacturing facilities, the current slow post-earthquake assessment and
reoccupation process can have an extreme economic impact far beyond the
reconstruction costs. This economic impact adversely affects the facility owners
as well as companies that insure such facilities.
3. The current state of damage prognosis

The earlier articles in this theme issue show that there is a considerable amount
of literature that focuses on identifying damage in engineering systems. The most
advanced damage detection systems, which have made the transition from
research to practice, include those used for helicopters’ gearbox monitoring,
where the Federal Aviation Administration has already endorsed their
effectiveness and those used to monitor damage accumulation in rotating
machinery such as the integrated condition assessment system deployed on US
Navy ships (DiUlio et al. 2003). However, in almost all cases prognosis remains
elusive. To date, one of the few attempts at integrating DP around a predictive
capability is also encountered in the field of rotating machinery (Anon. 2000).
Successful applications of rotating machinery DP exist because extensive
datasets are available, some of which include the monitoring of the machines
to failure. Also, for this application the damage location and damage types as
well as operational and environmental conditions are often well known a priori
and do not vary significantly.

Perhaps, the most refined form of combined health and usage monitoring can
be found in the helicopter industry. Although it is somewhat short of physical
damage-based prognostics, the use of vibration data trending for predictive
maintenance can lead to increased rotor component life of 15% (Silverman 2005).
Phil. Trans. R. Soc. A (2007)
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Of even more significance, the introduction of health and usage monitoring
systems (HUMS) for main rotor and gearbox components on large rotorcraft has
been shown to reduce ‘the fatal hull loss within the UK to half what could have
otherwise been expected had HUMS not been installed’ (McColl 2005). The
essential features of this apparent success are that the rotor speed—although not
the torque—is maintained typically within 2% of nominal for all flight regimes
and that there is a single load path with no redundancy. These constraints
provide a basis for a stable vibration spectrum from which a change in measured
parameter is attributable to component deterioration. This luxury, consisting of
an easily identifiable parametric change coupled with a stable excitation source,
makes helicopters particularly amenable to prognostics. Unfortunately, the DP
task is complicated when the loading spectrum is constantly varying as would
typically be encountered in automotive and military engine applications.

Seismic probabilistic risk assessment (PRA) and seismic margins assessments,
as they have been applied to commercial nuclear power plant structures and
systems, can to some degree be viewed as forms of DP that has been practiced
for more than 20 years. The objective of a seismic PRA is to obtain an estimate
of the annual probability that some level of damage will occur to a system as a
result of some future earthquake. As an example, seismic PRAs may be used to
estimate the probability of core melt in the power plant. Alternatively, the
PRAs can be used to estimate the consequences of core melt such as the
exposure of the neighbouring population to radioactive materials. One input to
a seismic PRA is a probabilistic description of the expected failure rates
of system-critical components as a function of earthquake ground motion levels.
These probabilistic failure rates are based on analysis, testing or past
experience. Additional inputs to the PRA include a probabilistic description
of the future earthquake ground motion levels and a fault tree/event tree system
model that predicts failure (e.g. core melt) as a result of individual component
failures. Historically, the frequency of failure estimate has been used to assist in
risk-based maintenance and upgrade of safety class components. For this
application, the relative contributions of the various components to system
failure are assessed. This information is then used to prioritize equipment for
safety upgrades. There has been recent pressure by licensees to move to a
risk-based licensing approach and, as a result, the US Nuclear Regulatory
Commission has conducted research efforts to establish a risk-based licensing
methodology (USNRC 1995). It should be noted that in its current state seismic
PRA is carried out strictly as an analytical study without experimental
verification on a system level (Ellingwood 1994) and it does not make use of
information from any kind of SHM systems. In other words, this process does
not account for the inevitable deterioration of the system that will result from
normal operations over extended periods of time.

When one looks beyond the examples cited above, few journal papers can be
found that discuss DP for other applications. A recently published book (Inman
et al. 2005), which is based on a series of papers presented at 2003 Pan-American
Advanced Study Institute dedicated to the topic of DP is one of the first
publications dedicated to the topic of DP. This dearth of publications on DP
indicates that this technology is still in the early developmental phase and that
there is a need for considerable DP technology development.
Phil. Trans. R. Soc. A (2007)
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4. Defining the damage prognosis problem

The definition of the DP problem starts by first answering three general questions.

(i) What are the loading conditions that cause the damage of concern?
(ii) What techniques should be used to assess and quantify the damage?
(iii) Once the damage has been assessed, what is the goal of the prognosis?

When developing answers to these questions, one will have to consider the
length and time-scales associated with the damage and its propagation. As
discussed below, the categories do not have sharp boundaries and many
applications will overlap the various categories.

For each potential failure mode, the loading conditions that cause damage and
subsequent failure fall into three general categories. The first category is gradual
wear, where damage accumulates slowly at the material or component level,
often on the microscopic scale. An example of such gradual damage accumulation
is the corrosion of metallic structural components. The second category is
predictable discrete events. While the damage typically still originates on the
microscopic scale, it accumulates at faster rates during sudden events that can be
characterized a priori. Aircraft landings can be viewed as a predictable discrete
event that can eventually lead to damage accumulation in the landing gear or
airframe. Unpredictable discrete events are the third category in which unknown
and severe loading is applied to the system at unpredictable times. Many
natural-phenomena hazards such as earthquakes and hurricanes as well as
human-made hazards associated with terrorist bomb blasts can produce such
unpredictable discrete events.

After identifying the type(s) and source(s) of damage, it is then important to
determine which techniques should be used in the damage assessment. The first
question that arises concerns whether the assessment should be done online in
near real time, or off-line at discrete intervals, as this consideration will strongly
influence the data acquisition and data processing requirements, as well as the
set limits on the computational requirements of potential assessment and
prognosis techniques. For unpredictable discrete events, the assessment must be
done online to be of any use, thus limiting the choice of the assessment
techniques. However, for gradual wear, there are cases where the assessment
need not be performed in near real time, and hence there is much more flexibility
to develop an appropriate assessment technique.

Assessment techniques can generally be classified as either physics-based or
data-based, though typically a combination of the two will usually be employed.
The physics-based assessments are especially useful for predicting system
response to new loading conditions and/or new system configurations (damage
states). However, physics-based assessments are typically more computationally
intensive than data-based techniques.

Data-based assessment techniques, on the other hand, rely on previous
measurements from the system to assess the current damage state, typically by
means of some sort of pattern recognition method. However, although data-based
assessment techniques may be able to indicate a change in the presence of new
loading conditions or system configurations, they will perform poorly when
trying to classify the nature of the change. Typically, the balance between
Phil. Trans. R. Soc. A (2007)
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Figure 1. The general components of a DP process.
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physics-based models and data-based techniques will depend on the amount of
relevant data available and the level of confidence in the predictive accuracy of
the physics-based models.

Once the current damage state has been assessed, the prognosis problem can
begin to be addressed by determining the goal for the prognosis. Perhaps, the
most obvious and desirable type of prognosis estimates how much time remains
until maintenance is required, the system fails or the system is no longer usable.
Because predictive models typically have more uncertainty associated with them
when the structure responds in a nonlinear manner as will often be the case when
damage accumulates, an alternative goal might be to estimate how long the system
can continue to safely perform in its anticipated environments before one no
longer has confidence in the predictive capabilities of the models that are being
used to perform the prognosis.
5. The damage prognosis process

The general components of a DP process are depicted in figure 1 where the
process has been divided into the portions that are physics- and data-based. The
DP process begins by collecting as much initial system information as possible
including testing and analyses that were performed during the system design as
well as maintenance and repair information that might be available. This
information is used to develop initial physics-based numerical models of the
system as well as to develop the sensing system that will be used for damage
assessment and whatever additional sensors are needed to monitor operational
and environmental conditions. The physics-based models will also be used to
define the necessary sensing system properties (e.g. parameter, location,
bandwidth and sensitivity). For instance, an understanding of the physics of
gear wear has led to a measure of oil conductivity in helicopter gearboxes on the
basis of the metallic contamination after wear and erosion.
Phil. Trans. R. Soc. A (2007)
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Since there will be a finite budget for sensing, the physics-based models will
often be a part of an optimization study that will attempt to maximize the
observability of damage given constraints on the sensing system properties. As
data become available from the sensing systems, they are used to validate and
update the physics-based models. These data along with output from the
physics-based models will also be used to perform SHM where the existence,
location, type and extent of damage are quantified. Data from the operational
and environmental sensors are used to develop data-based models that predict
the future system loading. The output of the future loading model, SHM model,
and the updated physics-based model will all be input into a reliability-based
predictive tool that estimates the remaining system life. Note that the definition
of ‘remaining life’ can take on a variety of meanings depending on the specific
application. A key point illustrated in figure 1 is that various models will have
to be employed in the prognosis process. Moreover, the data- and physics-based
portions of the process are not independent. This combination of physics- and
data-based models is the key distinguishing attribute of a prognostic rather
than a health monitoring system; the capacity to revisit design life prediction
on the basis of usage data and a change in physical properties. This form of
prognostics process allows for alternative load path calculations—arising from
redundant systems—and a change in operational use that has not been
anticipated in the original design assumptions. Finally, the solution process will
be iterative, relying on the assessment of past prediction accuracy to improve
future predictions.
6. Emerging technologies that will have an impact on the damage
prognosis process

There are many emerging technologies that will have an impact on the
development of a DP capability for various types of engineering systems. Those
technologies listed below are not intended to be an exhaustive list, but rather
illustrative in nature.
(a ) Damage measurement systems

Clearly, some of the most rapidly evolving technologies that will impact the
ability to perform DP are associated with sensing, processing and telemetry
hardware. There are extensive efforts underway at both academic and corporate
research centres to develop large-scale, self-organizing and embedded sensing
networks for a wide variety of applications. These studies focus on developing
cost-effective dense sensing arrays and novel approaches to powering the sensing
systems that harvest the ambient energy available from the structure’s
operating environment (Sodano et al. 2003). Although hardware technologies
show every prospect of delivering such systems, their application must be
related to the physics of the problem, that is, the damage measurement
system must embed sensors that are sensitive to a change in structural
condition; and the system itself must be more reliable than the structure/
component it is monitoring.
Phil. Trans. R. Soc. A (2007)
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(b ) Statistical inference for damage diagnosis

Statistical inference is concerned with the implementation of algorithms that
analyse the distribution of extracted features in an effort to make decisions on
damage diagnosis and prognosis. The algorithms used in statistical model
development fall into the three general categories: (i) group classification, (ii)
regression analysis, and (iii) outlier detection. The appropriate algorithm to use will
depend on the ability to perform supervised or unsupervised learning. Supervised
learning refers to the case where examples of data from damaged and undamaged
structures are available. Unsupervised learning refers to the case where data are
only available from the undamaged structure. The success of decision-making can
be assessed by (i) overall misclassification rate (false positive/negative indications
of damage or system failure), (ii) receiver operating characteristic (Egan 1975)
curves (ROC), and (iii) confidence intervals on prediction.

One of the main issues in this decision-making procedure is to establish
decision threshold values. In particular, extreme value statistics can be employed
for the establishment of decision boundaries to minimize false positive and nega-
tive indications of damage. Statistical inference is often based on the assumption
that the underlying distribution of data is Gaussian. However, the assumption of
normality imposes potentially misleading behaviour on the extreme values of the
data, namely, those points in the tails of the distribution. As the problem of
damage identification specifically focuses attention on these tails, the assumption
of normality is likely to lead any analyses astray. The physical interpretation
justifying a guarded confidence in the tail distribution is that these values are
likely to be influenced by nonlinearities in the structure. A component suffering
degradation or approaching failure most likely will have changed from its original
design parameters through localized nonlinear deformation. An alternative
approach based on extreme value statistics can be applied specifically to model
behaviour in the tails of the distribution of interest (Worden et al. 2002).

(c ) Prediction modelling for future loading estimates

A successful DP requires the measurements of the current system state and the
prediction of the system deterioration when subjected to future loading. Based on
the analysis of previous loading histories, future loading is forecast using various
data-driven time-series prediction modelling techniques. For example, metamo-
delling such as state-space representation (Ljung 1999) and multivariate ARMA
models (Box et al. 1994) can be employed to track previous loading and to predict
future loading for this purpose. Thus, reliability-based decision analysis provides
an appropriate tool to synthesize all this information (Ang & Tang 1984).

(d ) Model verification and validation

As DP solutions rely on the deployment of a predictive capability, the
credibility of numerical simulations must be established. The process of
establishing this confidence in the predictive capabilities of the numerical
simulations is accomplished through various activities, collectively referred to as
verification and validation (V&V). A significant challenge here is to validate
nonlinear models. However, the current state-of-the-art (Hemez et al. 2004) in
this area is still not at the stage where linear dynamic and stress models are
routinely validated, particularly for complex materials such as composites.
Phil. Trans. R. Soc. A (2007)
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(e ) Reliability analysis for DP decision-making

In reliability analysis, the failure state of a system is represented by a function
of the response known as the limit state. Then, the probability of failure is the
integral of the joint probability density function (JPDF) over the unsafe region
bounded by the limit state (Robertson & Hemez 2005). As an example, the
objective of a probabilistic reliability analysis may be to answer the question of
how many more fatigue cycles the structure can experience before the damage
reaches a critical size. If failure is defined, for example, in terms of a wing flutter
condition, then the reliability analysis consists of estimating the probability of
reaching this limit state (e.g. reduction of the wing’s first torsion mode damping),
given uncertainties about the model that predicts this frequency reduction as a
function of future loading, current health of the system and expected future
loading on the wing. Decision-making relies on the estimation of reliability, as
well as a quantification of its confidence, to decide which course of action should
be taken.

This analysis begins with identifying the failure modes (such as delamination
in a composite material) and the random variables that contribute to these
failure modes (such as projectile impact velocity, ply orientation angles,
homogenized elasticity parameters and material density). To calculate the
probability of failure, the JPDF must be integrated across all random variables
for the failure region. Because closed form representations of the failure region
are generally not available, integration must be approximated by applying
Monte Carlo sampling or approximate expansion methods to the previously
identified metamodels. Reliability analysis will necessarily be applied to estimate
the remaining useful life of the systems under uncertainty.
7. Concluding comments

The challenge of DP is developing and integrating sensing hardware, data
interrogation software and predictive modelling software that will prove more
robust than the component- and system-level hardware the DP system is
intended to identify. This paper aims to provide an overview of the issues that
must be addressed and technical approaches being used to realize solutions to
this problem. Certainly, considerable technical and cultural challenges remain.
The technological aspects are easier to define and anticipate. Already a
substantial body of evidence indicates that the individual components of a DP
process are realizable, but the integration of all the necessary technologies has
been very limited. However, if robust DP solutions are to be adopted, then a
change in certification culture must arise that embraces an iterative safety and
maintenance process, which may alter significantly from the original design
calculations. A ‘morphing’ safety case based on PRA coupled with a nonlinear
iterative model validation will require significant investments in test and analysis
correlation studies before proof of robustness is established in each of the
constituent technologies. Therefore, it is crucial to apply this technology initially
to problems with well-defined damage concerns and where the prognosis system
is not relied upon to make decisions impacting life-safety. As an example,
deployment of a DP system on an unmanned aerial vehicle may be more
appropriate than deployment of such system on a commercial passenger aircraft.
Phil. Trans. R. Soc. A (2007)
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In any case, it is almost certain that new DP approaches will initially be applied
in parallel with current system evaluation and maintenance procedures until the
DP methodology can be shown to provide a reliable and more cost-effective
approach to system operation, assessment and maintenance.

As this technology evolves, it is anticipated that the DP solutions developed
through rigorous validation of each technological component will be used to
confirm system-level integrity to normal and extreme loading environments;
to estimate the probability of mission completion and personnel survivability; to
determine the optimal times for preventive maintenance; and to develop the
appropriate design or operation modifications that prevent observed damage
propagation. The multidisciplinary and challenging nature of the DP problem,
its current embryonic state of development, and its tremendous potential for life-
safety and economic benefits qualify DP as a grand challenge problem for
engineers in the twenty-first century.
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