An Update-Aware Disk Access Interface
for High-Throughput Database Indexes

Tzi-cker Chiueh

Experimental Computer Systems Lab
Stony Brook University

8/6/2008 HEC-FSIO 2008

Random Index Update
Workload

= Block-level continuous data protection
o Logs every disk write operation to disk

¢ Inserts entries into two indexes:
Timestamp+LogicalBlockAddress (with locality)

LogicalBlockAddress+Timestamp (no locality)

= Very-large-scale data deduplication

+ 1PByte backup server using 4KByte block as unit of de-
duplication =» 250B entries of block fingerprint

+ Every disk block backed up needs to access this fingerprint
Index and update some reference count

8/6/2008 HEC-FSIO 2008

Conventional Disk Access
Interface

m Disk read: read(target_disk address, dest_buffer, len)
Optimization: read ahead or prefetching

= Disk write: write (source_disk_address, src_buffer, len)
Optimization: logging and write behind

= Typical policy

o Disk reads are serviced mostly synchronously

o Disk reads are serviced at a higher priority than disk writes

= Disadvantage: reads in write-after-read update operations cannot
be serviced in the same asynchronous way as write operations

8/6/2008 HEC-FSIO 2008 3

Update-Aware Interface

s A new Interface:

update(target_disk_address, in_buffer, ptr_update fn)
Modify a disk block by applying an update function (insert,
delete, modify) using an input buffer as the argument

= Why Is this interface useful

+ Provides more scheduling flexibility because reads in
update operations can be serviced asynchronously

+ Enables higher batching efficiency for disk write
operations: The disk scheduler can directly invoke
application-specific modifications on disk blocks

8/6/2008 HEC-FSIO 2008

Batching Operations Using
Sequential Commit

= Glven an update operation
+ Log the update operation
+ Buffer it in a queue for batching
+ Sequentially commit them to disk

= Advantages:

+ More efficient use of physical memory, which is used for
batching operations rather than caching disk blocks

Disk accesses used in committing updates are sequential
+ No impact on read performance

+ Applicable to inserts, deletes and modifications
8/6/2008 HEC-FSIO 2008

How It Works

In-memory
operation queue
requests
— —

5

8/6/2008 HEC-FSIO 2008

on-disk data
structure

Low-Latency Space-Efficient
Disk Logging

= Disk geometry-aware Disk Array Logging

o Implements “write to where the disk head happens to be”
semantics with logical disk write batching

+ Supports multiple physical writes per disk track
o Leverages multiple disks to mask track-to-track seek delays

= Performance (five 7200RPM IDE disks connected
through Promise Ultral00 TX2 IDE controller)

o 12500 4KB logical disk writes with 1.8 msec average latency
for each logical write

o Space utilization: 70%

8/6/2008 HEC-FSIO 2008

Example

= A B-Tree index facing an input workload with
random record insertions and updates

o Each B-tree index update request is implemented as a disk
update operation of a leaf index page

o Disk update operations against leaf index pages are batched and
committed sequentially

+ Latency is not compromised because of low-latency logging

+ Throughput is optimized because of batching and sequential
commit

= Same principle can be applied to other database
Index structures such as Hash Table, R Tree, Kd tree,
etc.

8/6/2008 HEC-FSIO 2008

BOSC vs. TPIE

Original TPIE ——
100000

T
c
Q
Q
€L

)
o
€L

o
o

=
e
Q
Q
€L

o

=

._:_.
=]
o

L
()]
=
o
F]

L

[

10000 100000
Physical Memory (unit:KB)

8/6/2008 HEC-FSIO 2008

BOSC-based Block-Level CDP

| I
G000 Without index updating —e—

BOSC index updating
____ BOSC with append-like logging
5000 T TPIE index updating

4000

3000

2000

.‘_-.\.
[
A
==
i]
=
. s
-
8=
=
—
—
s |
T
=
—
=
]
—
[R—
=0
—
s |
—
-
=
=

1000

100 200 400

Inter-Request Interval (unit:usec)
8/6/2008 HEC-FSIO 2008

Summary

= Insight: Exposing an entire disk block update operation
to the disk scheduler provides more scheduling

flexibility (asynchronous read) and enables higher disk
access efficiency (sequential commit)

= Research guestions:

+ How far can this approach go?

Extension to network storage system and other higher-level
operations

Interactions with concurrency control and failure recovery

+ How to Integrate BOSC with data-intensive computing

Infrastructure such as Apache Hadoop and Column-based
DBMS

8/6/2008 HEC-FSIO 2008 11

8/6/2008

Questions?

Thank Youl

chiueh@cs.sunysb.edu
http://www.ecsl.cs.sunysb.edu

HEC-FSIO 2008

12

	An Update-Aware Disk Access Interface for High-Throughput Database Indexes
	 Random Index Update Workload
	Conventional Disk Access Interface
	Update-Aware Interface
	Batching Operations Using Sequential Commit
	How It Works
	Low-Latency Space-Efficient Disk Logging
	Example
	 BOSC vs. TPIE
	BOSC-based Block-Level CDP
	Summary
	�Questions?

