
Wayne State University
Cluster and Internet Computing Laboratory 

A Framework that Makes any Replacement 
Algorithms (almost) Lock Contention Free

Song Jiang
Department of Electrical and Computer Engineering

Wayne State University

Xiaodong Zhang
Department of Computer Science and Engineering

Ohio State University

In collaboration with



2

Demand for High Scalability on Buffer Management

Effective management of buffer cache is critical for I/O-
intensive applications. 
– Memory is several orders of magnitude faster than hard disks.
– Both temporal and spatial localities can be exploited for high 

cache hit ratio.
I/O concurrency is increasingly high.
– Hundreds of thousands of threads/transactions;  
– Multi-processors and multi-cores  systems.
High concurrency demands high scalability on buffer 
management.
– This is in addition to the requirement of high hit ratio. 
– The scalability can be severely limited by lock contention. 



Lock Operation for Replacement Algorithms

Lock Synchronization

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )

Looking-up Hash Table

Data Accesses

Buffer Pool

Buffer Page

Hard Disk

Misses: bottleneck

Hits: bottleneck

3



4

Replacement Algorithm: 
Optimized for Hit Ratio or Scalability ?  

2Q, LRU, LIRS, 
ARC, MQ, SEQ, …. 

……

……

for high hit ratio 

update data update data 
structurestructure

No Lock 
Synchronization

CLOCK, CLOCK- 
Pro, CAR, …. 

for high scalability 

?

Clock-based approximations exhibits sub-optimal performance;

The transformation can be difficult and demand great efforts;

Some algorithms don’t have clock-based approximations. 

Can we have both?

Lock 
Synchronization

modify data modify data 
structuresstructures



Use of Locks: 
Optimized for Lock Contention or Hit Ratio?

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

RA RA RA RA RA RA RA RA

Distributed Locks

Centralized Lock

The lock contention may not be evenly reduced;

Localized history access information can harm hit ratio;

Some replacement algorithms do not work without global information. 



A Framework that Makes any Replacement Algorithms 
(almost) Lock Contention Free

The objectives of our solutions:  

Do not require changes of existing replacement algorithms 

Retain the advantages of high hit ratios

Replacement algorithms scale as well as the clock-based approximations.   

Our approaches:  

Amortizing lock acquisition cost by batching requests; 

Reducing lock holding time by prefetching 



Reducing Lock Contention by Batching Requests 

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

One queue 
per thread



Amortized Lock Acquisition Cost

Hardware: SGI Altix 350 SMP with 16 Itanium 2 processors;

Software: postgreSQL 8.2.3

Workload: DBT-1 test kit (simulating TPC-W)  

(Lock acquisition cost + lock holding time) 
normalized over requests in a batch 

Ti
m

e 
(m

ic
ro

se
co

nd
)

Reduced by 
over 90%!



Reducing Lock Contention by Batching Requests 

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

When to commit accesses in a queue:

(1) TryLock() 

(2) If the queue is full, Lock()

9



Reducing Lock Contention by Prefetching 

10

Time

Thread 2

Thread 1

Cache Miss 
Stalk

Time

Thread 2

Thread 1

Pre-read data that 
will be accessed in 
the critical section 



Performance Evaluation
Hardware Systems:

– SGI Altix 350 SMP with 16 Itanium 2 processors
– Dell PowerEdge 1900 Server (two quad-core Xeon  X5355 processors)

Software: 
– PostgreSQL 8.2.3 + Linux Red Hat Enterprise Linux AS;

Workloads
– DBT-1 (simulating TPC-W) from OSDL database test suite;
– DBT-2 (simulating TPC-C) from OSDL database test suite;

Tested policies



Reduction of Lock Contention 
(SGI Altix 350, DBT-1, no misses)

12

• Lock contention: a lock cannot be obtained without blocking; 
• Average lock  contention: number of lock contentions per million page accesses.

Reduced 
by over 
7000 times!



Improvement of System Throughput  
(DBT-1, no misses)

13

SGI Altix 350 
(16 Itaniums)

Poweredge 1900 
(two quad-core Xeon)

Throughput is 
doubled!



Benefits from Both High Hit Ratio and Low Lock Contention 
(SGI Altix 350, DBT-1, #processors = 8)

14
Hit Ratio Normalized Throughputs

High Hit 
Ratio Low Lock 

Contention



15

Summary

A scalable replacement algorithm is critical with rapidly 
increasing number of cores/processors.
It is challenging to design a replacement algorithm of 
both high hit ratio and high scalability.
Our framework can make any replacement algorithm (of 
high hit ratio) scalable;
The framework enables high system performance with 
different buffer cache sizes.



Song Fu @ Wayne State

Thank  you !

16


	A Framework that Makes any Replacement Algorithms (almost) Lock Contention Free
	Demand for High Scalability on Buffer Management
	Lock Operation for Replacement Algorithms
	Replacement Algorithm: �	Optimized for Hit Ratio or Scalability ?  
	Use of Locks: �	Optimized for Lock Contention or Hit Ratio?
	 
	Reducing Lock Contention by Batching Requests 
	Amortized Lock Acquisition Cost
	Reducing Lock Contention by Batching Requests 
	Reducing Lock Contention by Prefetching 
	Performance Evaluation
	Reduction of Lock Contention �(SGI Altix 350, DBT-1, no misses) 
	Improvement of System Throughput  �(DBT-1, no misses) 
	Benefits from Both High Hit Ratio and Low Lock Contention �(SGI Altix 350, DBT-1, #processors = 8) 
	Summary
	Thank  you !

