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Demand for High Scalability on Buffer Management

Effective management of buffer cache is critical for I/O-
intensive applications. 
– Memory is several orders of magnitude faster than hard disks.
– Both temporal and spatial localities can be exploited for high 

cache hit ratio.
I/O concurrency is increasingly high.
– Hundreds of thousands of threads/transactions;  
– Multi-processors and multi-cores  systems.
High concurrency demands high scalability on buffer 
management.
– This is in addition to the requirement of high hit ratio. 
– The scalability can be severely limited by lock contention. 



Lock Operation for Replacement Algorithms

Lock Synchronization

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )

Looking-up Hash Table

Data Accesses

Buffer Pool

Buffer Page

Hard Disk

Misses: bottleneck

Hits: bottleneck
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Replacement Algorithm: 
Optimized for Hit Ratio or Scalability ?  

2Q, LRU, LIRS, 
ARC, MQ, SEQ, …. 

……

……

for high hit ratio 

update data update data 
structurestructure

No Lock 
Synchronization

CLOCK, CLOCK- 
Pro, CAR, …. 

for high scalability 

?

Clock-based approximations exhibits sub-optimal performance;

The transformation can be difficult and demand great efforts;

Some algorithms don’t have clock-based approximations. 

Can we have both?

Lock 
Synchronization

modify data modify data 
structuresstructures



Use of Locks: 
Optimized for Lock Contention or Hit Ratio?

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

RA RA RA RA RA RA RA RA

Distributed Locks

Centralized Lock

The lock contention may not be evenly reduced;

Localized history access information can harm hit ratio;

Some replacement algorithms do not work without global information. 



A Framework that Makes any Replacement Algorithms 
(almost) Lock Contention Free

The objectives of our solutions:  

Do not require changes of existing replacement algorithms 

Retain the advantages of high hit ratios

Replacement algorithms scale as well as the clock-based approximations.   

Our approaches:  

Amortizing lock acquisition cost by batching requests; 

Reducing lock holding time by prefetching 



Reducing Lock Contention by Batching Requests 

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

One queue 
per thread



Amortized Lock Acquisition Cost

Hardware: SGI Altix 350 SMP with 16 Itanium 2 processors;

Software: postgreSQL 8.2.3

Workload: DBT-1 test kit (simulating TPC-W)  

(Lock acquisition cost + lock holding time) 
normalized over requests in a batch 
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Reduced by 
over 90%!



Reducing Lock Contention by Batching Requests 

Replacement Algorithm (modify data structures, etc. )(modify data structures, etc. )
Buffer Pool

When to commit accesses in a queue:

(1) TryLock() 

(2) If the queue is full, Lock()
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Reducing Lock Contention by Prefetching 
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Time

Thread 2

Thread 1

Cache Miss 
Stalk

Time

Thread 2

Thread 1

Pre-read data that 
will be accessed in 
the critical section 



Performance Evaluation
Hardware Systems:

– SGI Altix 350 SMP with 16 Itanium 2 processors
– Dell PowerEdge 1900 Server (two quad-core Xeon  X5355 processors)

Software: 
– PostgreSQL 8.2.3 + Linux Red Hat Enterprise Linux AS;

Workloads
– DBT-1 (simulating TPC-W) from OSDL database test suite;
– DBT-2 (simulating TPC-C) from OSDL database test suite;

Tested policies



Reduction of Lock Contention 
(SGI Altix 350, DBT-1, no misses)
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• Lock contention: a lock cannot be obtained without blocking; 
• Average lock  contention: number of lock contentions per million page accesses.

Reduced 
by over 
7000 times!



Improvement of System Throughput  
(DBT-1, no misses)
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SGI Altix 350 
(16 Itaniums)

Poweredge 1900 
(two quad-core Xeon)

Throughput is 
doubled!



Benefits from Both High Hit Ratio and Low Lock Contention 
(SGI Altix 350, DBT-1, #processors = 8)
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Hit Ratio Normalized Throughputs

High Hit 
Ratio Low Lock 

Contention
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Summary

A scalable replacement algorithm is critical with rapidly 
increasing number of cores/processors.
It is challenging to design a replacement algorithm of 
both high hit ratio and high scalability.
Our framework can make any replacement algorithm (of 
high hit ratio) scalable;
The framework enables high system performance with 
different buffer cache sizes.



Song Fu @ Wayne State

Thank  you !
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