
Xiaodong Zhang
Dept. of Computer Science and Engineering

The Ohio State University

Song Jiang
Dept. of Electronic and Computer Engineering

The Wayne State University

for

Power Management for Storage System
Power management is a critical issue in computer systems

Energy and heat dissipation cost
System Reliability
Environmental effects

Hard disk is a big energy consumer for I/O intensive jobs
E.g. hard disk drives account for 86% of total energy consumption in
EMC Symmetrix 3000 storage systems.
As low-frequency multi-core CPUs become more energy efficient,
disks are less.

2

Conventional Disk Power Management
Dynamic Power Management (DPM) for disks

When disk is idle, spin it down to save energy.
When a request arrives, spin it up to service the request.
Improper spinning-down incurs substantial performance and
energy penalty.
Disk energy saving is highly dependent on the pattern of disk
accesses.

3

Ideal Access Pattern for Power Saving

4

Ideal disk power saving condition
Requests to disk are bursty;
Hard disk can sleep well and work energetically

time
Disk accesses

Disk Accesses in bursts

Long Disk Sleep Interval

Increasing

Burstiness of disk accesses is the

key to
 saving disk energy

Increasing

Burstiness of disk accesses is the

key to
 saving disk energy

Buffer Cache Affects Disk Access Patterns

5

Buffer cache is on the critical path of I/O service
Accessed disk data may be cached in main memory (buffer cache).
Data can be prefetched into the cache before requested.
Hits in buffer caches are fast, and eliminate disk accesses.
The buffer cache is able to filter request stream and change disk access
streams.

Applications

Buffer Cache

Hard Disk

requests

disk accesses

Prefetching Caching

Existing Solution for Bursts in Disks

6

Forming Bursty Disk Accesses with Prefetching
Predict the data that are likely to be accessed in the future
Preload the to-be-used data into memory
Directly condense disk accesses into a sequence of I/O bursts

Both energy efficiency and performance could be improved

Limitations
Buffer caching shares the same buffer space.
Aggressive prefetching shrinks available caching space and demands highly
effective caching
Energy-unaware replacement can destroy bursty patterns orchestrated
by prefetching

Caching can Easily Affect Access Patterns

7

An example

Original Disk Accesses

time

time

BurstyDisk Accesses organized by Prefetching

a b c

Buffer Cache

a
b
c

3 blocks to be evicted by
Energy-Unaware CachingUnfortunately, these blocks

to be accessed in a non-bursty way

Disk still cannot sleep well
Solely relying on prefetching is not sufficient

Energy-aware caching policy is needed to help create bursty disk
accesses

Solely relying on prefetching is not sufficient
Energy-aware caching policy is needed to help create bursty disk

accesses

Existing Caching Policy
Unaware of Disk Energy Statuses

8

Existing Caching Policies
Identify the data that are less likely to be accessed in the future (LRU)
Evict the not-to-be-used data out of memory
They are performance-oriented and energy-unaware

Most are locality-based algorithms, e.g. LRU , LIRS, DULO.,
Assume that disks are always awake.
No consideration of creating burst disk access pattern

C-Burst (Caching for Bursts)
Our objectives: effective buffer caching

To create burst disk accesses for disk energy saving
To retain the performance (high hit ratios in buffer cache)

Restructuring Buffer Caches

9

Buffer cache is segmented into two regions
Locality region (LR)

Hot blocks are managed using locality-based scheme
Blocks w/ strong locality are cached in LR
Objective: is to reduce memory misses
Retain the I/O performance

Energy-aware region (EAR)
Cached blocks are managed using C-burst schemes

Blocks to be accessed in non-bursty periods are kept here
Re-accessed block (strong locality) is promoted into LR

Region size is dynamically adjusted
Both performance and energy saving are considered

Locality
Region
(LRU)

Energy
Aware
Region

(C-Burst)

Buffer Cache

Buffer
Cache
(LRU)

History-based C-Burst (HC-Burst)

10

Distinguish different streams of disk accesses
Multiple applications run simultaneously in practice

Various applications exhibit very different access patterns
Bursty – e.g. grep, CVS, etc.
Non-Bursty– e.g. make, mplayer, etc.

Accesses reaching the hard disk can be a mixture of both
bursty and non-bursty accesses

The aggregate disk access pattern is determined by the most
non-bursty one

Basic Idea of History-based C-Burst (HC-Burst)

11

time

grep

time
make

time

Grep
+
make

bursty

access
long disk Idle intervals

non-bursty

access
short disk Idle Period

Aggregate Results:
non-bursty

access

a b c d e f g

A B C D
a

b c d
e

E F G H f g

Buffer Cache

To cache the blocks being accessed in a non-burst pattern, to

reshape

 disk accesses to a bursty pattern

To cache the blocks being accessed in a non-burst pattern, to

reshape

 disk accesses to a bursty pattern

History-based C-Burst (HC-Burst)

12

Epoch
Application’s access pattern may change over time
Execution is broken into epochs of fixed size (T seconds) .

T = (Disk Time-out Threshold) / 2
Not too large: no disk spin-down happens during one epoch with disk
accesses
Not too small: stable access patterns can be captured.

time

grep

time
make

a b c d e f g

epoch

History-based C-Burst (HC-Burst)

13

Block Group
Blocks accessed in one epoch by the same application are grouped into a block
group
The size of a block group indicates the burtiness of data access pattern of one
application

The larger a block group is, the more bursty disk accesses are

time

grep

time
make

a b c d e f g

epoch
Block Groups

History-based C-Burst (HC-Burst)

14

HC-Burst Replacement Policy
Two types of blocks should be evicted

Data blocks that are unlikely to be re-accessed
Blocks with weak locality (e.g. LRU blocks)

Data blocks that can be re-accessed with little energy
Blocks being accessed in bursty pattern

Victim block group – the block group containing these two types of
blocks

Blocks that are frequently accessed would be promoted into LG
Blocks that are accessed in a bursty pattern stay in a large block group

Large block group holds blocks being accessed in bursts and of weak locality.

Level L-1

History-based C-Burst (HC-Burst)

15

Multi-level Queues of Block Groups
L-level queues of block groups
A block group of N blocks stays in queue
Block groups on one queue are linked in the order of their epoch times
Block groups may move to a higher/lower level, if # of blocks changes

Level 0

Level 1

Level L-2

Grep
of blks= 1024
Epoch ID = 10

Block is promoted to LRGrep
of blks= 1023
Epoch ID = 10

Victim block group
LRU + MB

make
of blks= 1023
Epoch # 8

Block is demoted to EARMake
of blks= 1024
Epoch # 8

Epoch Time
Least Recent Used (LRU) Most Recent Used (MRU)

Burtiness

Least Bursty (LRU)

Most Bursty (MB)

Prediction-based C-Burst (PC-Burst)

16

Main idea
Certain disk access events are known and can be predicted.
Evicting a block that is to be accessed close to a deterministic disk access

time

deterministic
disk

accesses

short disk idle interval

Block A Block B

long disk idle interval

predicted
block

accesses

Predicting deterministic disk accesses

and block re-access time, PC-

 Burst evicts blocks to be accessed in a short intervals and holds

blocks to
be accessed in long idle intervals

Predicting deterministic disk accesses

and block re-access time, PC-

 Burst evicts blocks to be accessed in a short intervals and holds

blocks to
be accessed in long idle intervals

Holding Block B can avoid
breaking a long idle interval

Prediction-based C-Burst (PC-Burst)

17

Many well predictable periodic disk accesses exist in systems to
serve as deterministic disk accesses

Timer-controlled OS events (e.g. pdflush)
Multi-media workloads with steady consumption rate

In practice, disk access may fluctuate sometimes
System dynamics may affect disk I/O occasionally
I/O pattern change may happen over time

Challenge – how to accommodate occasional system dynamics
while responding quickly to real access pattern shift

Prediction-based C-Burst (PC-Burst)

18

Prediction of disk accesses
Track each application’s access history

Predictability of re-access time
Each appilication has a predictability score of [-32, 32]
Compare observed re-access time with predicted time

Wrong prediction, reduce an application’s score
Correct prediction, increase an application’s score
Application with a score less than 0 is unpredictable

epeated mis-prediction increases the charge of scores
exponentially

Ocasional dynamics only decreases an application’s score
slightly
Real access pattern change quickly decreases the score

-32

32

Correct
prediction

Wrong
prediction

credits

0

Performance Evaluation

19

Implementation
Linux Kernel 2.6.21.5
5,500 lines of code in buffer cache management and generic
block layer

Experimental Setup
Intel Pentium 4 3.0GHz
1024 MB memory
Western Digital WD160GB 7200RPM hard disk drive
RedHat Linux WS4
Ext3 file system

Performance Evaluation

20

Eight applications
3 applications w/ bursty data accesses
5 applications w/ non-bursty data accesses

Three Case Studies
Programming
Multimedia Processing
Transaction processing in servers

Name Description MB/ epoch Request/epoch

Make Linux kernel builder 1.98 119.7

Vim Text editor 0.006 0.395

Mpg123 Mp3 player 0.15 3.69

Transcode Video converter 3.2-6.5 10.9-19.1

TPC-H Database query #17 7.3 476.7

Grep Textual search tool 102.2 10186.6

Scp Remote copy tool 51.5-53.8 135-139

CVS Version control tool 19.9 1705.7

Performance Evaluation

21

Applications: grep, make, and vim
Grep – bursty workload
Make, vim – non-bursty workload

C-Burst schemes protects data set of make from being evicted by grep
Disk idle intervals are effectively extended

Performance Evaluation

22

Applications: grep, make, and vim
Grep – bursty workload
Make, vim – non-bursty workload

C-Burst schemes protects data set of make from being evicted by grep
Disk idle intervals are effectively extended

over 30% energy saving Nearly 0% intervals > 16 sec

Over 50% intervals > 16 sec

Conclusion

23

Increasing disk access burstiness is the key to achieving disk energy
conservation

Leveraging filtering effect of buffer cache can effectively shape the disk
accesses to an expected pattern

HC-Burst scheme can identify bursty access periods for each applications to
create a bursty stream of disk accesses

PC-burst scheme can predict blocks’ re-access time and manipulate the
timing of future disk accesses

Experiments show that C-Burst schemes can achieve up to 35% energy
saving with minimal performance loss

	Slide Number 1
	Power Management for Storage System
	Conventional Disk Power Management
	Ideal Access Pattern for Power Saving
	Buffer Cache Affects Disk Access Patterns
	Existing Solution for Bursts in Disks
	Caching can Easily Affect Access Patterns
	Existing Caching Policy �Unaware of Disk Energy Statuses
	Restructuring Buffer Caches
	History-based C-Burst (HC-Burst)
	Basic Idea of History-based C-Burst (HC-Burst)
	History-based C-Burst (HC-Burst)
	History-based C-Burst (HC-Burst)
	History-based C-Burst (HC-Burst)
	History-based C-Burst (HC-Burst)
	Prediction-based C-Burst (PC-Burst)
	Prediction-based C-Burst (PC-Burst)
	Prediction-based C-Burst (PC-Burst)
	Performance Evaluation
	Performance Evaluation
	Performance Evaluation
	Performance Evaluation
	Conclusion

