
Integrated Infrastructure for Secure and
Efficient

Long-Term Data Management

Presented by David Du
University of Minnesota

PI: Andrew Odlyzko
co-PI: David Lilja, Yongdae

Kim

Introduction
HPC

Improvement of SGS on-line storage system through Lustre and
Panasas Active Scale
Archival storage has gotten less attention ⇒ key bottleneck for HPC

35 TB/hr in 2003 ⇒ 350 TB/hr in 2006 [Grider 2006]
Other businesses require SGS archival

check images, medical imaging, video/audio, email records
infrequently accessed but usually must be retained for long periods
of time and must be readily accessible when needed
Legal/government mandates, e.g. Sarbanes-Oxley, HIPAA

Long-term protection of cryptographic keys: a major challenge
Loss of keys
User and group membership changes
Retrieval of old data

Requirements and Focus
Requirements for Long-term Data Archiving and Protection

High data archive and restore throughput
Automated and transparent management of data migrations in storage hierarchy
Efficient backup and retrieval of keys
Key recovery
Long-term key management

group reorganization such as creation/deletion/split/merge

Usability
Scalability

Original focus of this project: Investigate archiving on OCFS
Transparent backup and archive functions: Mostly Done
High-performance backup, restore, and data access operations: Mostly Done
Efficient techniques for ensuring long-term data security and accessibility: On-
going

High-Performance and Transparent Backup
David Du, Dingshan He, Changjin Hong, Jaehoon Jeong, Vishal Kher, Yongdae Kim,
Yingping Lu, Aravindan Raghuveer, Sarah Sharafkandi, "Experiences in Building an
Object-Based Storage System based on the OSD T-10 Standard", 14th NASA
Goddard, 23rd IEEE Conference on Mass Storage Systems and Technologies, (2006)
Dingshan He, Xianbo Zhang, David H.C. Du, Gary Grider, "Coordinating Parallel
Hierarchical Storage Management in Object-based Cluster File Systems", 14th NASA
Goddard, 23rd IEEE Conference on Mass Storage Systems and Technologies, (2006)
Xianbo Zhang, David Du, Jim Hughes, Ravi Kavuri, "HPTFS: A High Performance
Tape File System", 14th NASA Goddard, 23rd IEEE Conference on Mass Storage Systems
and Technologies, (2006)
Nagapramod Mandagere, Jim Diehl, David Du, "GreenStor: Application-aided
Energy-efficient Storage", 24th IEEE Conference on Mass Storage Systems and
Technologies, (2007)
Dingshan He, Nagapramod Mandagere, David Du, "Design and Implementation of a
Network Aware Object-based Tape Device", 24th IEEE Conference on Mass Storage
Systems and Technologies, (2007)

Secure File Systems

Vishal Kher, Eric Seppanen, Cory Leach, Yongdae Kim,
"SGFS: Secure, Efficient and Policy-based Global File
Sharing", 14th NASA Goddard, 23rd IEEE Conference on
Mass Storage Systems and Technologies, (2006)
Vishal Kher, Yongdae Kim, "Building Trust in Storage
Outsourcing: Secure Accounting of Utility Storage", IEEE
International Symposium on Reliable Distributed Systems,
(2007)

Software Release I

The DISC-OSD project at the University of Minnesota
provides an implementation of an object based storage
ecosystem. This toolkit contains a SCSI OSD ANSI-T10
compliant target, initiator drivers and a file system.
It is currently open-sourced at source forge
(http://sourceforge.net/projects/disc-osd/).
It was downloaded more than 100 times so far.

Software Release II

CoreFS is a very basic network file system built on top of FUSE.
The file system allows users to access files stored on the file server
from remote machines.
The goal of this file system is to give file system developers some
form of basic distributed file system, which can be later modified as
per the implementer's requirement. We will provide some core
features - hence the name "coreFS".
We are currently implementing encrypted file system on top of
coreFS.
It is currently open-sourced and was originally available from
http://www.cs.umn.edu/research/sclab/coreFS.html.
Now, it has been moved to sourceforge.
(http://sourceforge.net/projects/corefs/)

Current Focuses

Data Deduplication
Efficient dedup algorithms

Long-term key management
Key Management
Theoretical Foundation of File Encryption

Efficiency of Data center (not covered)
Greenstor: Power management for data center

Solid State Drives and Hybrid Drives (not covered)
Application support: Intelligent Storage + Database (not
covered)

A Novel Data De-duplication Approach
With Global Information

Guanlin Lu, Yu jin, David Du

Motivation
What is deduplication?
Why is it useful?

In network communication
“Cache-based compaction”

In storage backup case, to reduce the backup size
In versioning control system, to reduce the size of all versions
of a file.

“XDFS”

In Virtual Machine applications

What will have impact on its performance (both time
complexity and space saved)?

Content-based Chunking Approach & Its
Limitations

Main idea
Identify and then eliminate overlapping regions of data.

Basic methods
use deterministic sampling approach to determine boundary regions. A chunk is
defined as data spanning two neighboring boundaries.
Compute Rabin’s fingerprints as the key of each fixed length sliding window
(Key mod Intra-file-sampling-factor)= 0 indicates a chunk boundary
Compute hash value of each chunk, e.g. SHA-1 or MD5

Pros
Among these deterministic sampling determined anchors, higher chance for identical
ones to be found, compared to randomly chosen ones.
Only need single-pass through the data
Chunk size is variable

Cons
Be ignorant about data set characteristics
May miss valuable boundaries for space reduction because of indistinguishably
treating each key.

Our Novel Approach

Fundamental Approach Based on Global Information

keys with high frequency tend to be the boundaries
Missing them may degrade content based chunking significantly
However, identifying high frequency keys is costly

Proposed approach

Using sampling techniques to get key frequency distribution without
paying high cost (approximation vs. accurate)
Sampling techniques can also filterout keys of low frequency
Our preliminary experiments indicate this approach outperforms
current algorithms both in backup data sets and daily directory data
sets of different users.

Experiment results

General settings:
Data set: one user’s Linux home directory of our research
group
Total file number: 180
Size: 313.4 MB
Chunking parameters:
Sliding window length = 40 bytes; Intra-file sampling factor = 8192; skipping files < 2 KB;
MAX_CHUNK_LENGTH: UNLIMITED; MIN_CHUNK_LENGTH: 40 bytes

We compare the result of standard chunking approach to the result of our
approach. In this preliminary experiment, we only treat keys as boundaries
whose appearing time is above a certain threshold.

Experiment results

Accurate case:

Consider only high frequency keys that we collected
The total number of distinct keys for this data set: 178,054,348

• Approximation: Using our sampling approach to get the frequent key

Experiment results (cont.)

Previous result scaled in space saving ratio
Space saving ratio = (size before de-dup –size after de-dup) /
size before de-dup

Application-Driven Meta-Data Aware Deduplication

Structure of an object stored on the Intelligent
Storage Nodes (ISN)

O bject ID

D ata L ength

A ccess Control Mask

O bject Metadata Chunk Index Chunk
ID Chunk Content Chunk

ID Chunk Content …

E ntry 1

… …
E ntry 2

E ntry n

Chunk ID

O ffset in O bject

Chunk L ength

Encapsulation of Chunking API for Different Applications

Examples of Email Compression

From:
Time
To:

Title:
Body:

From:
Liuxx758@tc.umn.

edu

You may receive
unsubscription and

subscription
notices if you

qualify to
belong to either
disc_student or
disc _faculty.

Delivered-To:
disc_students@cs.

umn.edu;
disc_faculty@cs.u

mn.edu

01011101
01010101
01010301
010101...

Files

Semantic
Chunks

Objects

An email received by Alice

The “ From” fragment

An email received by Bob

The “ Delivered-To”
fragment

The attachment

Bit string of an object

Comparison of Compression ratio on Email
Archival system using different compress methods

Original Space (Megabytes) : 161
Robin Fingerprint : 10.3
Gzip : 11.8
Semantic de-duplication: 9

We have tested out four applications including email, web
document, audio and flash video archival with similar
results.

Efficient Deduplication

Algorithms Under
Different Application Environments

Guanlin Lu, David Du

Assumptions for different application
environments

Application Environment I
Regarding each file as a pure bit stream, no other information
available.

Application Environment II
With descriptive information available

E.g. name, type, owner, version, c/m time, annotations, etc…

With format information available
E.g. MIME,HTML, XML, JPEG,MPEG, etc…

Challenges under Environment I
Two Main Challenges

The number of files needed to compare with is large.

The definition of similarity measure
Using the real delta encoding gain as similarity measure is too
expensive. Therefore we need to find efficient approximate measures.
models of approximate similarity measure

Shingle-set definition (quite a few previous works based on this)
Fingerprint Frequency Vector (proposed)

Related works under this environment
[1] propose an approximate measure of pairwise similarity of two
files used to estimate the gain of expensive real encoding.

[2] formulate the problem of finding optimal encoding scheme for a
collection of files as finding maximum branching on a direct
weighted graph. It also tries to reduce the edge comparison cost of
branching finding algorithm through reducing original graph into a k-
nearest-neighbor graph.

[3] propose a way to cluster near duplicated documents, although
the discussion is rough and preliminary and many factors are not
considered, it is very first one to indicate clustering may be
promising.

[1]DRED: delta-encoding via resemblance detection
[2]Cluster-based delta compression
[3]Identifying and filtering near-duplicate document

Challenge I. Analysis
Analysis of the challenge

A main high cost is the large number of comparisons among
files, which can be decomposed into 2 major costs:

(1) Cost of a large number of pairwise comparisons in getting
neighboring relations
(2) Cost of a large number of pairwise comparisons in getting the
optimal encoding policy
Pairwise real delta encoding is prohibitively expensive given a large
number of files involved.

Challenges under Environment II
The dataset size can be much larger than what we’ve
assumed in Environment I.

Data classification + format based de-duplication

Some preliminary ideas would be first classifying files
based on given descriptive information, and for each
class, de-duplicate using format information, some initial
work of format based de-duplication is carrying on now.

Key Management

Aaram

Yun, Chunhui

Shi, Nohhyun

Park, Yongdae

Kim,
David Du

Key Management
Transparent encryption and key management

to improve usability and manageability
Securing data at rest

End-to-end encryption = Writer encrypts, reader decrypts
Previous key management works focused on providing solutions
satisfying a single requirement

e.g. Hierarchical key management for improving scalability, Key rolling for
efficient recovery of past keys, Broadcast encryption and group key
distribution for efficient revocation

This projects investigate key management solutions that satisfy
multiple requirements at the same time.

Key recovery and backup
Adopting and improving cryptographic key recovery mechanism for
storage

Blending Multiple Requirements
Limited Roll-back

Previous solutions allow to roll-back indefinitely
Not necessarily secure for all environments

Can we limit the number of roll-back so that the new user might have
access to only specified number of keys (without sacrificing significant
performance penalty)?

Efficient Hierarchical Access Control
RBAC (Role-based Access Control) provides efficient grouping based on
roles
Hierarchical key management may reduce number of keys managed by
individual nodes
But, it fails to achieve similar efficiency as RBAC

i.e. revocation of higher-level node = revocation of all nodes under the high-level
node

No effort to merge/split of groups in hierarchical key management
Can we apply broadcast encryption/group key management to improve
these problems?

Blending Multiple Requirements II
Ultimate goal

Revocation-efficient
hierarchical key management
with limited key roll-back

Swiss Army Knife
Existing mechanisms satisfy one of the requirement
Different organizations/applications have different key
management requirement and file/membership dynamics
All group keys have to be roll-back to the previous keys
Should be able to specify the number of roll-back period

Potential Key Management Solutions
IBE (Identity Based Encryption)

ID is the public key
HIBE (Hierarchical IBE)

ID is hierarchically structured
Higher IDs can decrypt ciphertexts for lower IDs

ABE (Attribute-Based Encryption)
Instead of ID, a set of attributes is used

KP-ABE (Key-Policy ABE)
Encryption is done w.r.t. an attribute set
An user with matching policy can decrypt

CP-ABE (Ciphertext-Policy ABE)
Encryption is done w.r.t. a policy
An user with matching attribute set can decrypt

Revocation for IBE
Revocation is a big challenge for public key crypto
Especially for IBE: revoking an ID?
Epoch based solution: encrypt to (ID, time-period)

Potential problems: Inconvenient for storage encryption
In order to have access to data encrypted with older epoch,
the user has to keep all the older private keys
Or, has to request them again
More painful if fine-grained epoch required

Revocation for ABE
Inequality based solution exists for ABE

Instead of a single epoch, an inequality of form ‘epoch ≤ x?’ or
‘epoch ≥ x?’ can be formed inside the policy
Don’t have to keep many private keys
Applicable to both KP-ABE and CP-ABE

HIBE with epoch-based revocation?
HIBE is natural for hierarchically structured organizations (e.g.
Role-based Access Control)
Not very convenient to do epoch-based revocation

Higher ID could decrypt a ciphertext for lower ID, regardless of
epoch

Proposed Solution: HABE
HABE (Hierarchical ABE)

A natural extension of both HIBE and ABE
Enables HIBE style hierarchy management
Enables the inequality based revocation of ABE

Current status
Designed a solution
Analyzing security

Theoretical Foundation of File
Encryption

Aaram

Yun, Yongdae

Kim

File encryption
Actual content of a file is encrypted with a File
Encryption Key using symmetric cryptography
The file encryption key is controlled by users’ attributes
and credentials.
Question: How to encrypt the file content?

Previous works
Many disk encryption software use CBC mode, often
with a fixed IV for each chunk

Many don’t include data authentication

Some existing data authentication schemes emphasize
minimizing the additional storage, instead of minimizing
performance

Goal
Formally define the security notion for authenticated and
encrypted file
Design a secure, efficient scheme which accomplishes the
security notion

Our approach
Use authenticated encryption mode of operation to
encrypt and authenticate each chunk of data
Protect the nonces used for the chunk encryption by
some authentication
Very straightforward and clean method for providing
encryption and authentication

Comparison with Hash Tree method
Hash tree based method (e.x., Oprea and Reiter,
USENIX Security 2007)

Encrypt each chunk with a nonce
Provide the authenticity by protecting the ciphertext by hash
tree
Protect the nonces

If nonces are protected, then it is not necessary to
protect the whole ciphertexts by a hash tree

Each ciphertext of each chunk may be protected separately,
instead of linking all of them together by the hash tree
For this role, the authenticated encryption scheme is more
suitable

Current Status
Formally defined the security notion
Have a design using authenticated encryption and
universal hash-based MAC
Proved the security of the scheme

Working on details of the scheme
How to represent the nonces
How to store the authentication info
Which AE and MAC to choose

Conclusions

Long-term data preservation imposes many challenges
We have also addressed a small portion of the problem
Deduplication can be very useful
There are rooms to improve the current depup
algorithms
Long-term key management is still not solved
How to keep data securely and safely preserved needs
more research

	Integrated Infrastructure for Secure and Efficient �Long-Term Data Management
	Introduction
	Requirements and Focus
	High-Performance and Transparent Backup
	Secure File Systems
	Software Release I
	Software Release II
	Current Focuses
	Slide Number 9
	Motivation
	Content-based Chunking Approach & Its Limitations
	Our Novel Approach
	Experiment results
	Experiment results
	Experiment results (cont.)
	Slide Number 16
	Structure of an object stored on the Intelligent Storage Nodes (ISN)
	Encapsulation of Chunking API for Different Applications
	Examples of Email Compression
	 Comparison of Compression ratio on Email Archival system using different compress methods
	Efficient Deduplication Algorithms Under Different Application Environments
	Assumptions for different application environments
	Challenges under Environment I
	Related works under this environment
	Challenge I. Analysis
	Challenges under Environment II
	Key Management
	Key Management
	Blending Multiple Requirements
	Blending Multiple Requirements II
	Potential Key Management Solutions
	Revocation for IBE
	Revocation for ABE
	Proposed Solution: HABE
	Theoretical Foundation of File Encryption
	File encryption
	Previous works
	Goal
	Our approach
	Comparison with Hash Tree method
	Current Status
	Conclusions

