
Programming Models and
Storage System for High

Performance Computation

Vivek Sarkar

Jack Dennis

Guang R Gao

MIT CSAIL

University of Delaware

Rice University

Problem: I/O Performance

Culprits:

• Large Units of Data Transfer
• Operating System Overhead/Noise

Managed by hardware
Managed by software (OS)

$
Main

Memory

L3

$

P

Disk

Other

File
Memory

• Few Concurrent Transfers (OS Limits) 2

$P

$P

Why do we use Software?
Why is the OS such a burden?

Hardware addressing of memory is inadequate:
• Does not support Program Modularity

• Threads/Jobs run in multiple address spaces – costly communication
and sharing

• Moving objects between memory and file system requires explicit
action

3

• Does not support Security and Privacy
• All or nothing protection

• Software required to implement Principle of Least Authority

We can do better!

3. Flexible Allocation of Resources

• Extend Virtual memory to encompass all storage
• Provide efficient allocation of processing capacity.

1. Globally Valid Names for Objects

What is Needed

2. Support for Isolation of Objects/Collections

• To communicate without requiring name translation

• Ability to transfer access authority without granting
too much

• Something more efficient than directory path names.

4

Ideas to Build on
• Global Unique Identifiers of Objects

• Integrate File System with Memory

• Memory Model Based on Tree Structures

• Capability-Based Security

• Functional Programming

• Determinate Execution when Desired

• Principles of Software Modularity

• System-Wide Memory Management (GC)

• Uniform System-Wide Scheduling

5

The Fresh Breeze Memory Model

• Chunk: A fixed-size unit of memory allocation. On
the order of a cache line or VM page.

• Each chunk has a unique identifier with system-
wide scope; this is the pointer or UID of the chunk.

• Chunks may be created, accessed, and released.
• Objects are trees of chunks; unbounded extent.
• No update. Chunks are Write-Once
• The graph of chunk references is Cycle-Free.
• Concurrent reference count garbage collection.

6

Data Structures: The Heap as a DAG

• Fan-out as large as 16

Data
Chunks
e.g. 128 Bytes

Master
Chunk

• Arrays: Three levels yields
4096 elements (longs)

Cycle-Free Heap Arrays as Trees of Chunks

7

Conventional versus Fresh Breeze
Conventional Fresh Breeze

$

Naming:
Naming:

Mapping:

Consistency:

Mapping:

Consistency:

Objects: Segments in Main Memory (bounded)
Files/Records in the File System

Main

Storage

System:

Objects

(Trees)

$
L1

$
2

File
$

Main
Memory

Associative HW at all levels

Write-Once with GC;
No consistency issue

Global unique identifiers

Objects: Trees of fixed-size chunks
Uniform at all levels

Cache Protocols, not including
the File System

Addresses/pointers in main memory
Path names in file system

HW assisted in main memory
SW directories in File System

File
System

Files
$

L1$
$
2

8

Protection and Security

• A thread must possess a UID to access
a chunk

• Given a UID, a process can access the
heap subtree reachable from the UID.
May be code or data; only code is
executable.

• Write protection is not relevant.
• A user gains access to data and code

through his/her root directory.

9

Project Concept

Execution
System

Storage
System

Programming Models,
Three Versions

Specified by:
Fresh Breeze

Memory Model

Specified by:

10

Storage System Architecture
Execution System

Top Storage
Level

11

AD

Main Storage
Level

CU
SU

SU
AD CU

SU

SU

AD CU
SU

SU

AD – Associative Directory

CU - Control Unit

SU – Storage Unit

The Three Programming Models
1. Declarative Programming (MIT)

Based on FunJava, a functional dialect of Java

2. Strongly-Typed Imperative Programming (Rice)

Based on X10, including the async and finish
Primitives for parallel programming

3. Weakly-Typed Runtime Interface (API) (UDel)

Providing direct access to the TNT API plus
Storage System operations.

12

(MIT) (RICE) (UDEL)
Declarative Programming

Language
Strongly-Typed

Imperative Language
Weakly-Typed Runtime

Interface

Compiler

Dataflow IR

Intermediate Representation Transformations

Common Transformed IR

Code Generation

Threaded IR

Multithreaded Execution Model (TNT-X) with
Storage System Runtime Library

Storage System

IR

Compiler Compiler

13

•
•
•

•
Candidate simulation platform:

Feedback welcome on all these
topics

Proposed Experimental System

14

Evaluation:
Variation of performance with:

Choice of memory chunk size
Structure of the Storage System
Load Balancing and Scheduling
policies
Choice of Programming Model

•

Candidate benchmark suites:

• IOR (http://sourceforge.net/projects/ior-sio)

• IOzone (http://www.iozone.org/)

• Xdd (http://www.ioperformance.com/)

FAST simulator for IBM Cyclops-64
extended with storage components

Summary
Programming Models and Storage System

for High Performance Computation

• I/O Performance:
The OS is in the way! Addressing means are inadequate!

Write once, fixed-size Chunks; Global Unique Identifiers

• New Memory Model

• Three Programming Models:
Declarative versus Imperative; Strongly versus Weakly Typed Language

• Experimental System:
TiNy Threads + FPGA + Flash

	Programming Models and Storage System for High Performance Computation
	Problem: I/O Performance
	Why do we use Software?�Why is the OS such a burden?
	Slide Number 4
	Ideas to Build on
	The Fresh Breeze Memory Model
	Data Structures: The Heap as a DAG
	Conventional versus Fresh Breeze
	Protection and Security
	Project Concept
	Storage System Architecture
	The Three Programming Models
	Slide Number 13
	Proposed Experimental System
	Summary

