
HEC FSIO R&D Conference, 11 August 2009

CRAM: A Congestion-Aware Resource 
and Allocation Manager for …

Randal Burns
John Linwood Griffin

Johns Hopkins University



CRAM: Project Overview
….for Data-Intensive High-Performance Computing



 

Problem: Processor-centric resource management 
wastes huge amounts of HPC resources

– Congestible (shared) resources often limit performance 
– Leads to poor utilization of expensive facilities



 

Goal: Allocate and schedule all of a system’s 
heterogeneous resources

– Detect and avoid congestion
– Balance resource usage to maximize system throughput
– Exploit workload elasticity to reconfigure jobs spatially and temporally



Congestion


 

Resources are congestible if the use by one party has 
negative externalities on other users

– Shared resources in HPC and file systems exhibit congestion, e.g. I/O 
throughput, IOPS, network, even memory

– Congestion of one resource dominates performance



 

Congestion pricing to mitigate congestion
– Theory demands exponentially increasing price with utilization
– Charge jobs to use congested resources



 

Multi-resource optimization
– Exploit elasticity in workloads
– File systems asynchronous operation: trade memory for network, I/O
– In HPC systems, we propose sharing non-congested resources



Scenario: I/O Speed Matching


 

Code: Astronomy image reprocessing for visualization
– Parallel data rate of 70GB/s keeps only 150 cluster nodes busy



 

Reconfiguration balances utilization
– Frees resources for other jobs



Scenario: Checkpoint Stall


 

Code: n-body molecular dynamics
– 1B particles on 100 nodes
– Checkpoint takes about 20 seconds



What’s broken?
Current allocation and scheduling practices



 

Require users/programmers to understand the 
resource requirements of their code

– Lead to gross over-provisioning



 

Allocate entire nodes
– Bundles all resources together
– But, resources get used heterogeneously in time and space



 

Does not manage I/O resources
– Leads to congestion and stalls



Mechanisms


 

Reconfiguring parallelism
– Balance consumption of I/O, network, memory, and processor
– Restart after checkpoint on different number of nodes
– Exploit spatial elasticity in HPC (number of nodes)



 

Co-scheduling batch workloads
– Shared resources with map/reduce, analysis, data mining, etc.
– Exploit temporal elasticity (in resource consumption)



 

Support low-priority allocation elastic jobs
– Execute on arbitrary numbers of nodes/cores
– Consume un-allocated resource fragments
– Enables new classes of users (non-stakeholders)



CRAM Execution



Challenges


 

Workload characterization
– Determining how jobs will interact with resources and currently 

running jobs
– Congestion makes profiling difficult or irrelevant



 

Requirements on software 
– Parallel checkpoints
– Tolerate reconfiguration



 

Practicalities and realities
– Performance interference for tightly coupled applications
– H/W support for resource sharing



Education Mission


 

Goal: to teach parallel programming as a core part of 
college and university curricula



 

Disseminate JHU’s Parallel Programming course
– To schools without HPC facilities and multi-core labs
– Programming exercises built on Web-services
– Partners with regional (Mid-Atlantic) teaching colleges, community 

colleges, and historically-black colleges.



 

Instructor workshops in 2010 and 2011
– Instructor training
– Customize curriculum for partner institution
– Help prepare grants for cloud computing services


	CRAM: A Congestion-Aware Resource and Allocation Manager for …
	CRAM: Project Overview
	Congestion
	Scenario: I/O Speed Matching
	Scenario: Checkpoint Stall
	What’s broken?
	Mechanisms
	CRAM Execution
	Challenges
	Education Mission

