
Streaming B-Trees
for

File System Grand Challenges

Streaming B-Trees
for

File System Grand Challenges

Charles E. Leiserson*Martin Farach-Colton‡
Bradley C. Kuszmaul*Michael A. Bender†

† SUNY Stony Brook
‡ Rutgers
* MIT

Grand Challenges

• At last year’s HECIWG, some file-system grand
challenges were identified.

• Of interest to us, develop a file system that
supports:
– Creating 30,000 microfiles/second.
– ls -R at near disk bandwidth speed.

Our Results

• We have developed the Streaming B-tree,
which is a drop-in replacement for the B-tree
at the back end of file systems.

• Streaming B-trees:
– Make »30,000 insertions per second.
– Do range queries at ~20-50% of disk bandwidth.

• When SB-trees are deployed in a file system,
we expect to solve two grand challenges.

Streaming B-Trees:
Fast Updates and Range Queries
Our data structures:
• Cache-oblivious lookahead array (COLA):

– Over 2 orders of magnitude improvement in inserts.
• Cache-oblivious shuttle tree:

– Asymptotically optimal point queries with fast
updates.

• Both:
– are cache oblivious (no platform dependent tuning).
– are fast for range queries.
– slower than B-trees for point queries.

Talk outline

• Analytic introduction to the memory hierarchy.
• Description of data structures.
• Experimental results.
• More data structures.

Disk-Access-Machine (DAM) Model
[Aggarwal, Vitter 88]

• Fast memory of size M
• Data grouped in blocks of size B
• Count # of memory (block) transfers

CPUCPU External
Memory

External
Memory

M
B

B

B
Fast

Memory

Cache-Oblivious (CO) Model
[Frigo, Leiserson, Prokop, Ramachandran 99]

Great for disks, which have no “correct” block size.
Disk-resident CO data structures can offer

speedups [Bender, Farach-Colton, Kuszmaul ‘06]

Great for disks, which have no “correct” block size.
Disk-resident CO data structures can offer

speedups [Bender, Farach-Colton, Kuszmaul ‘06]

CPUCPU External
Memory

External
Memory

M
B

?
?=

B = ?

B = ?

Like DAM model, except B and M unknown to algo.
• Parameters B and M appear in proofs only.
• Results generalize to multilevel hierarchy.
• Platform independent.

Fast
Memory

B-Tree Inserts Are Slow

O((1/B)log2N)*O(log2N)BRT [BGVW00]
O((1/√)logBN)*O(2logBN)B1/2-tree [BF03]

O((1/εB1-ε)logBN)*O((1/ε)logBN)Bε-tree [BF03]
O(logBN)O(logBN)B-tree [BM72]

InsertSearchCache-Aware Data
Structure

* amortized

B

B
height logBN

…

…

…

…

O(logBN) is suboptimal for inserts.
• Can get faster inserts with small loss to searches

B-tree [Bayer, McCreight 72]

B-Tree Range Queries Are Slow
Range query: scan of elements in chosen range.

– e.g., “ls -R”
• B-tree (and Bε-) leaves are scattered across disk.
• Random block transfers are 1-2 orders of

magnitude slower than sequential transfers.

height logBN

…
…

…
…

CO trees keeps keys (nearly) in order on disk
⇒ fast range queries.

…

CO Streaming B-Trees: Results
There exists cache-aware search/insert tradeoff.

O((1/BΩ(1/(loglogB)2))logBN +
(log2N)/B)*

O(logBN)CO Shuttle Tree
[this talk]

O((1/B)log2N)*O(log2N)CO Lookahead Array
(COLA) [this talk]

O(logBN + (log2N)/B)*O(logBN)CO B-tree [BDF-
C00,BDIW04,BFJ02]

InsertSearchCO Data Structure

* amortized

O((1/εB1-ε)logBN)*O((1/ε)logBN)Bε-tree [BF03]
InsertSearchCache-Aware DS

This work: two points in tradeoff, cache obliviously.

Talk outline

• Analytic introduction to the memory hierarchy.
• Description of COLA.
• Experimental results.
• More data structures.

Cache-Oblivious Lookahead Array

• Search: O(log2N) block transfers.
• Insert: O((1/B)log2N) amortized and O(log2N)

worst-case block transfers.
• Consists of ⎡log N⎤ arrays where the ith array

stores 2i elements.
– Each array is sorted and full (2i elements) or “empty”

(0 elements).
- Redundant “lookahead

pointers” aid searches.
- Search scans only O(1)

elements in each array! log2N

Talk outline

• Analytic introduction to the memory hierarchy.
• Description of data structures.
• Experimental results.
• More data structures.

COLA vs. B-Tree*:
Experimental Results

Random inserts are 1300 times faster in COLA
• B-tree: 14 days to insert (1.5×mem)-size dataset.
• COLA: 14 minutes to insert the same dataset.
COLA inserts are consistently fast
• Random only 10% slower than presorted inserts.
• Presorted inserts are 3.1× slower than B-tree, but

COLA does not (yet) optimize for this case.
Tradeoff:
• Point searches are 3.5× slower than B-tree.

* Our B-tree’s performance is comparable to Berkeley DB
[Bender, Farach-Colton, Kuszmaul 06].

COLA Test Specs

Machine:
• Dual Xeon 3.2GHz with 2MiB of L2 Cache.
• 4GiB RAM.
• Two 250GB Maxtor 7L250S0 SATA drives.

– Software RAID-0 with 64KiB stripe width.
• Linux 2.6.12-10-amd64-xeon in 64-bit mode.
Input:
• 64-bit keys and values.

COLA vs. B-Tree: Random Inserts
• The COLA is 1300 times faster than the B-tree

– Expect the B-tree to level off at ~3 orders of
magnitude slower than the COLA.

COLA vs. B-Tree: Searches
• The COLA is 3.5 times slower for searches

– N = 230 - 1
– Keys were inserted in order for the B-tree

Comparison

• B-tree gives ~100/insertions/second/disk.
• COLA gives ~150,000 insertions/second/disk.

– But point queries are 3.5x slower than B-trees.
• We have a new implementation that:

– handles 20K-30K.
– Point queries are 40% slower than B-trees.
– handles variable-length keys.

Talk outline

• Analytic introduction to the memory hierarchy.
• Description of data structures.
• Experimental results.
• More data structures.

Shuttle-Tree Overview

• Cache oblivious.
• Fast inserts (O((1/BΩ(1/(loglogB)2))logBN + (log2N)/B))

– using buffers that are (recursively) shuttle trees.
• Searches asymptotically match B-trees at

O(logBN). (COLA searches are only O(log2N).)
– using recursive cache-oblivious layout.

• Fast range queries.
– Layout keeps elements (nearly) in order.

• Uses PMA [Bender, Demaine, Farach-Colton 00] to
keep layout dynamically.

Shuttle Tree Uses Buffers For
Fast Inserts

The Shuttle Tree is a CO tree with degree-
nodes, where each node has buffers.

• Buffers are also shuttle trees.

Search:
• Walk down tree, looking in buffers.
• Cost is O((buffer searches) + (root-to-leaf path)).

…

Shuttle Tree Uses Buffers For
Fast Inserts

The Shuttle Tree is a CO tree with degree-
nodes, where each node has buffers.

• Buffers are also shuttle trees.

Insert:
• Fill buffer before moving down tree.
• Push buffer size keys down at a time.
• Amortize moving down tree against buffer size.

…

Publications

• Cache-Oblivious Streaming B-Trees (SPAA 07)
– Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman,

Yonatan R. Fogel, Bradley C. Kuszmaul, Jelani Nelson

• Cache-Oblivious String B-trees (PODS 06)
– Michael A. Bender, Martin Farach-Colton, Bradley C. Kuszmaul

What next? Tokutek

• We are commercializing this technology through
a startup called Tokutek.

• We are looking for insert-intensive applications.
• We are looking for engineers.

Buffer for Fast Inserts:
The Cache-Aware Bε-Tree [Brodal, Fagerberg 03]

Search:
• Walk down tree, looking in buffers.
• Cost is O((buffer search)h) = O((1/ε)logBN)

• Nodes have fanout Bε and total buffer size B.

fanout Bε

size-B1-ε buffer

height h=logBεN B

Buffer for Fast Inserts:
The Cache-Aware Bε-Tree [Brodal, Fagerberg 03]

Inserts:
• Fill buffer before moving down tree.
• Push buffer size = B1-ε keys down at a time.
• Cost is O(h/(buffer size)) = O((1/εB1-ε)logBN)

• Nodes have fanout Bε and total buffer size B.

fanout Bε

size-B1-ε buffer

height h=logBεN B

