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Motivations: Metadata bottleneck in 
Petabyte-scale Storage

• Huge amount of metadata data 
– Petabytes of data involves Terabytes of metadata

• System memory is not big enough to keep all 
the metadata in cache
– in the magnitude of Gigabytes

• Metadata differs from data
– Skewed metadata traffic in Petabyte-scale storage 

systems
– Metadata access pattern



SAM2 Toolkit: Scalable and Adaptive Metadata 
Management for High-end Computing

● Example Data-intensive Application: CMS
- Petabytes in 2002 
- ~100 Petabytes by 2007
- Exabytes by ~2015

● Challenges
- Metadata Scalability
- Metadata Dependability

● Solutions
(1) Fault tolerance

- Recovery (FAST’07, MSST’07)
- Disk level data reorganizing 
- Replica management

(2) Fast metadata lookups      
- HBA (TPDS)
- G-HBA 
- Metadata prefetching 

(3) Memory energy efficiency (Cluster’07)      
(4) Prototype Implementation & Tracing
- dCache for CMS
- PVFS 
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Metadata Reliability

PRO: A Popularity-based Multi-threaded Reconstruction 
Optimization  for RAID-Structured Storage Systems

Motivation: Popularity and Locality of Workloads
• Pareto’s Principle (80/20 Principle): 80% accesses are 

always directed to 20% of the data. (SPECT02) 
• 14%~30% of the files accessed on the media server 

accounted for 90% of the media sessions and 92%~94% of 
the bytes transferred, and were viewed by 96%~97% of the 
unique clients. (IEEE/ACM ToN) 



PRO Motivation (cont’d)

Question:
Reconstruction + Popularity = ?

Answer:
• By reconstructing high-popularity data units of a failed disk 

prior to reconstructing other units,  we may render 
redirection of reads much more effective!

• Even if the newly rebuilt high-popularity data units are not 
re-accessed immediately, the region being rebuilt is likely to 
be in close proximity of the region being accessed by the 
user,  rendering head-following much more effective!



PRO Overview

• PRO =   Existing Reconstruction 
+ Popularity Detector 
+ Priority-based Time-Sharing Scheduling

• Divide data units on the spare disk into hot zones, and generate multiple 
reconstruction threads for each hot zone. 

• Keep track of the user accesses, and adjusts the popularity of hot zones.
• Select the reconstruction thread with the highest priority and allocates a 

time slice to it. 
• If the thread runs out of its time slice, PRO suspends it and repeat above 

process



Evaluation 1: PRO integrated with DOR in 
RAIDframe under NetBSD

RAID 
Level

Numbe
r 

of 
Disks

Reconstruction Time (second)

Web Trace 1 Web Trace 2 Web Trace 3

DOR PRO improve
d DOR PRO improve

d DOR PRO improve
d

RAID
5

3 1123.8 666.5 40.7% 1058.3 585.2 44.7% 452.3 351.6 22.3%

5 457.4 353.1 22.8% 374.5 304.1 18.8% 242.8 203.9 16.0%

7 344.0 319.1 7.2% 325.7 278.5 14.5% 238.2 210.8 11.5%

9 243.5 240.3 1.3% 231.5 215.3 7.0% 192.4 184.5 4.1%

RAID
1 2 1208.1 1157.

7 4.2% 938.0 870.1 7.3% 424.2 409.5 3.7%

Three traces used are all read-only web search traces.

A comparison of PRO and DOR reconstruction times



A comparison of PRO and DOR user response times

RAID 
Level

Number 
of 

Disks

Average User Response Time during recovery (millisecond)

Web Trace 1 Web Trace 2 Web Trace 3

DOR PRO improved DOR PRO improved DOR PRO improved

RAID5

3 31.8 24.2 23.9% 28.5 23.9 16.0% 27.4 23.1 15.6%

5 21.7 19.3 11.1% 21.0 18.7 11.0% 20.0 17.8 11.3%

7 25.0 23.8 5.1% 22.5 21.4 4.5% 22.6 20.0 11.8%

9 19.1 18.2 4.5% 19.6 17.3 11.5% 19.5 18.8 3.6%

RAID1 2 29.5 28.2 11.1% 21.4 20.6 11.0% 18.8 17.8 11.3%

Evaluation 2: PRO integrated with DOR in 
RAIDframe under NetBSD



While the WebSearch trace is mostly read-only, the Financial trace is re
ad-and-write.

Evaluation 3: PRO integrated with PR in 
Linux Software RAID (MD)

RAID 
Level

Number 
of 

Disks

Average User Response Time during recovery (millisecond)

WebSearch Financial

PR PRO improved PR PRO improved
RAID-5 3 225.67 183.37 18.74% 92.44 63.95 30.82%

5 252.98 210.67 16.72% 68.34 54.46 20.31%

7 258.06 230.25 7.85% 71.36 55.93 21.62%

9 257.86 236.55 8.26% 62.62 48.55 22.47%

RAID-10 4 235.61 233.91 0.72% 50.75 48.81 3.82%

6 238.45 239.66 -0.51% 59.88 51.50 13.99%



While the WebSearch trace is mostly read-only, the Financial trace is re
ad-and-write.

Evaluation 4: PRO integrated with PR in 
Linux Software RAID (MD)

RAID 
Level

Number 
of 

Disks

Reconstruction Time (second)

WebSearch Financial

PR PRO improved PR PRO improved
RAID-5 3 488.23 487.95 0.06% 247.73 236.57 4.5%

5 483.20 484.22 -0.21% 313.63 244.23 22.13%

7 487.29 489.41 -0.44% 315.89 251.66 20.33%

9 488.36 487.66 1.43% 315.75 284.63 9.86%

RAID-10 4 487.53 487.98 -0.09% 418.11 418.74 -0.15%

6 489.31 486.86 5.03% 421.33 442.52 -5.03%



Scalability: Metadata Prefetching

Motivations
• Small metadata size advocates aggressive 

prefetching 
– Less mis-prefetch penalty for disk
– Less mis-prefetch penalty for memory

• Example
– Average Unix file size: 22 KB
– Average metadata size: 1.4 KB



Nexus: A Novel Weighted-Graph-Based Prefetching Algorithm 
for Metadata Servers in Petabyte-Scale Storage Systems

Nexus Algorithm

// Let G denote the graph to be built
BUILD-RELATIONSHIP-GRAPH(G)
1. G ← ∅
2. for each new incoming metadata request j
3. for each req i (i ≠ j) in history window
4. if edge (i, j) ∉ G
5. then add edge (i, j) to G with proper weight
6. else add proper weight to edge (i, j)
7. replace the oldest item in history window with j
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Nexus Hit Rate Comparison
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Nexus Scalability Study
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• STEP 1: according to the group size, 
we divide the training trace into 
different groups, fix the first two 
items and filter the same items in 
each group. 

• STEP 2: find out different items in 
the training trace and use these 
items as the root of the tree. 

• STEP 3: allocate rest items of each 
group  to the corresponding  tree, 
and find out the prefetching rule 
from the tree.

Data-Mining-Based Metadata Prefetching

A:3

AB:2 AD:1

ABC:1 ABD:1 ABE:2

ABCD:1 ABCE:1 ABDE:1

ABCDE:1

ADE:1 ADF:1 ADB:1

ADEF:1 ADEB:1

ADEFB:1

ADFB:1

DMP trains the past traces to obtain correlation rules 
and uses these rules to do prefetching. 



DMP Average Hit Rate
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Scalability: Fast Metadate Lookups 
Decentralizing Metadata Management

• Given a humanly readable file name f∈F, function ψ
returns the home metadata server of  f.

• Metrics:
– Lookup efficiency: How fast to locate the home metadata 

server of a given file?
– Migration cost: Since metadata servers leave and  join, does a 

file’s metadata need to be relocated to implement ψ?
– Overhead: memory (space) and network (bandwidth) overhead

: F MΨ → :F Legible file names

:M Metadata servers



Basic Idea of Grouped-HBA (G-HBA)
• Basic idea: allow each MDS to maintain a 

subset of replicas to achieve load balance 
among multiple MDSs and space savings in 
each MDS, and support dynamic MDS-based 
and group-based operations.

• The benefits of G-HBA:
• Space savings;
• Strong scalability;
• Dynamic and adaptive operations;  
• Fast update for stale replicas in remote MDSs;
• Higher query accuracy and lookup efficiency;
• Least migration amounts of replicas; 



A Big Picture of G-HBA

LRU Bloom filters

Grouped Bloom filters

Size(group A)  = 4

Size(group B)  = 5

Size(group C)  = 6

MDS: Metadata server 

MDS

MDS

MDS

MDS

network
network

(1): local LRU query 

(2): local query on 
an MDS

(3): group multicast query

(4): global multicast query



Preliminary Results 1

Average query latency 
comparisons between 
HBA and G-HBA with 

intensified HP2000 trace 

Number of migrated replicas 
among HBA, Hash-based 

location and G-HBA



Preliminary Results 2

Latency for updating stale 
replicas in remote MDSs

Comparisons of false 
positive probabilities  

between HBA and G-HBA



Prototyping & Tracing:
Scaling dCache for Large Hadron Collider (LHC)

• dCache is a large-scale storage system from 
Deutsches Elektronen-Synchotron (DESY) and 
FNAL.
– Originally designed as an HSM
– Now can run without tape backend
– Chosen by the CMS project for US sites.

• Distributed architecture to allow the system to 
scale w.r.t. speed and number of connections.
– Each component is called a cell
– Not all cells are created equal!

24



Identifying Performance Bottlenecks

• We have instrumented two pieces of 
dCache to collect traces.

• The metadata server (PNFS).
– Collect query, response, and time taken.
– Allows us to identify performance under load 

and limits of the server.
• The inter-cell messaging system.

– Records destination, processing time and 
message contents.

– Records queue length for each cell.

25



dCache Monitoring

• We have a web interface which allows for 
realtime monitoring of PNFS performance.
– http://t2.unl.edu:8090/xml/
– Based upon above instrumentation

• Besides for watching individual 
components, we can also watch individual 
pool performance
– http://t2.unl.edu/srm_graphs/xml/

26





Initial Benefits
• Metadata trace information will enable 

future project of writing new, high-
availability metadata server.

• Messaging information allows us to 
identify components which are unable to 
scale with increasing demand.

• Monitoring systems allows us to identify 
hardware-related failures and quickly take 
care of them.  28



One CD a Second
• As scalability work has done, we’re 

approaching our goal of one CD a second 
(6 Gbps)

29
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