
Collaborative Research:
SAM2 Toolkit:

Scalable and Adaptive Metadata
Management for High-end Computing

Hong Jiang1, Yifeng Zhu2, Jun Wang3, David Swanson1

1 University of Nebraska, Lincoln
2 University of Maine, Orono

3 University of Central Florida

Motivations: Metadata bottleneck in
Petabyte-scale Storage

• Huge amount of metadata data
– Petabytes of data involves Terabytes of metadata

• System memory is not big enough to keep all
the metadata in cache
– in the magnitude of Gigabytes

• Metadata differs from data
– Skewed metadata traffic in Petabyte-scale storage

systems
– Metadata access pattern

SAM2 Toolkit: Scalable and Adaptive Metadata
Management for High-end Computing

● Example Data-intensive Application: CMS
- Petabytes in 2002
- ~100 Petabytes by 2007
- Exabytes by ~2015

● Challenges
- Metadata Scalability
- Metadata Dependability

● Solutions
(1) Fault tolerance

- Recovery (FAST’07, MSST’07)
- Disk level data reorganizing
- Replica management

(2) Fast metadata lookups
- HBA (TPDS)
- G-HBA
- Metadata prefetching

(3) Memory energy efficiency (Cluster’07)
(4) Prototype Implementation & Tracing
- dCache for CMS
- PVFS

Giga

Tera

Peta

Exa

Zetta

H. Jiang, D. Swanson, UNL, Y. Zhu, UMaine, J. Wang, UCF

Contents

• Metadata reliability
– Recovery

• Metadata scalability
– Metadata Prefetching
– G-HBA: Decentralized Metadata Management

• Prototyping and Tracing
– dCache Instrumentation

• Publications and Personnel

Metadata Reliability

PRO: A Popularity-based Multi-threaded Reconstruction
Optimization for RAID-Structured Storage Systems

Motivation: Popularity and Locality of Workloads
• Pareto’s Principle (80/20 Principle): 80% accesses are

always directed to 20% of the data. (SPECT02)
• 14%~30% of the files accessed on the media server

accounted for 90% of the media sessions and 92%~94% of
the bytes transferred, and were viewed by 96%~97% of the
unique clients. (IEEE/ACM ToN)

PRO Motivation (cont’d)

Question:
Reconstruction + Popularity = ?

Answer:
• By reconstructing high-popularity data units of a failed disk

prior to reconstructing other units, we may render
redirection of reads much more effective!

• Even if the newly rebuilt high-popularity data units are not
re-accessed immediately, the region being rebuilt is likely to
be in close proximity of the region being accessed by the
user, rendering head-following much more effective!

PRO Overview

• PRO = Existing Reconstruction
+ Popularity Detector
+ Priority-based Time-Sharing Scheduling

• Divide data units on the spare disk into hot zones, and generate multiple
reconstruction threads for each hot zone.

• Keep track of the user accesses, and adjusts the popularity of hot zones.
• Select the reconstruction thread with the highest priority and allocates a

time slice to it.
• If the thread runs out of its time slice, PRO suspends it and repeat above

process

Evaluation 1: PRO integrated with DOR in
RAIDframe under NetBSD

RAID
Level

Numbe
r

of
Disks

Reconstruction Time (second)

Web Trace 1 Web Trace 2 Web Trace 3

DOR PRO improve
d DOR PRO improve

d DOR PRO improve
d

RAID
5

3 1123.8 666.5 40.7% 1058.3 585.2 44.7% 452.3 351.6 22.3%

5 457.4 353.1 22.8% 374.5 304.1 18.8% 242.8 203.9 16.0%

7 344.0 319.1 7.2% 325.7 278.5 14.5% 238.2 210.8 11.5%

9 243.5 240.3 1.3% 231.5 215.3 7.0% 192.4 184.5 4.1%

RAID
1 2 1208.1 1157.

7 4.2% 938.0 870.1 7.3% 424.2 409.5 3.7%

Three traces used are all read-only web search traces.

A comparison of PRO and DOR reconstruction times

A comparison of PRO and DOR user response times

RAID
Level

Number
of

Disks

Average User Response Time during recovery (millisecond)

Web Trace 1 Web Trace 2 Web Trace 3

DOR PRO improved DOR PRO improved DOR PRO improved

RAID5

3 31.8 24.2 23.9% 28.5 23.9 16.0% 27.4 23.1 15.6%

5 21.7 19.3 11.1% 21.0 18.7 11.0% 20.0 17.8 11.3%

7 25.0 23.8 5.1% 22.5 21.4 4.5% 22.6 20.0 11.8%

9 19.1 18.2 4.5% 19.6 17.3 11.5% 19.5 18.8 3.6%

RAID1 2 29.5 28.2 11.1% 21.4 20.6 11.0% 18.8 17.8 11.3%

Evaluation 2: PRO integrated with DOR in
RAIDframe under NetBSD

While the WebSearch trace is mostly read-only, the Financial trace is re
ad-and-write.

Evaluation 3: PRO integrated with PR in
Linux Software RAID (MD)

RAID
Level

Number
of

Disks

Average User Response Time during recovery (millisecond)

WebSearch Financial

PR PRO improved PR PRO improved
RAID-5 3 225.67 183.37 18.74% 92.44 63.95 30.82%

5 252.98 210.67 16.72% 68.34 54.46 20.31%

7 258.06 230.25 7.85% 71.36 55.93 21.62%

9 257.86 236.55 8.26% 62.62 48.55 22.47%

RAID-10 4 235.61 233.91 0.72% 50.75 48.81 3.82%

6 238.45 239.66 -0.51% 59.88 51.50 13.99%

While the WebSearch trace is mostly read-only, the Financial trace is re
ad-and-write.

Evaluation 4: PRO integrated with PR in
Linux Software RAID (MD)

RAID
Level

Number
of

Disks

Reconstruction Time (second)

WebSearch Financial

PR PRO improved PR PRO improved
RAID-5 3 488.23 487.95 0.06% 247.73 236.57 4.5%

5 483.20 484.22 -0.21% 313.63 244.23 22.13%

7 487.29 489.41 -0.44% 315.89 251.66 20.33%

9 488.36 487.66 1.43% 315.75 284.63 9.86%

RAID-10 4 487.53 487.98 -0.09% 418.11 418.74 -0.15%

6 489.31 486.86 5.03% 421.33 442.52 -5.03%

Scalability: Metadata Prefetching

Motivations
• Small metadata size advocates aggressive

prefetching
– Less mis-prefetch penalty for disk
– Less mis-prefetch penalty for memory

• Example
– Average Unix file size: 22 KB
– Average metadata size: 1.4 KB

Nexus: A Novel Weighted-Graph-Based Prefetching Algorithm
for Metadata Servers in Petabyte-Scale Storage Systems

Nexus Algorithm

// Let G denote the graph to be built
BUILD-RELATIONSHIP-GRAPH(G)
1. G ← ∅
2. for each new incoming metadata request j
3. for each req i (i ≠ j) in history window
4. if edge (i, j) ∉ G
5. then add edge (i, j) to G with proper weight
6. else add proper weight to edge (i, j)
7. replace the oldest item in history window with j

14

Nexus Hit Rate Comparison

15

Nexus Scalability Study

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00
1600.00
1800.00

100 200 400 800

Number of Clients

Th
ro

ug
hp

ut
 (I

/O
 p

er
 se

co
nd

)

1 MDS
2 MDSs
4 MDSs
8 MDSs

• STEP 1: according to the group size,
we divide the training trace into
different groups, fix the first two
items and filter the same items in
each group.

• STEP 2: find out different items in
the training trace and use these
items as the root of the tree.

• STEP 3: allocate rest items of each
group to the corresponding tree,
and find out the prefetching rule
from the tree.

Data-Mining-Based Metadata Prefetching

A:3

AB:2 AD:1

ABC:1 ABD:1 ABE:2

ABCD:1 ABCE:1 ABDE:1

ABCDE:1

ADE:1 ADF:1 ADB:1

ADEF:1 ADEB:1

ADEFB:1

ADFB:1

DMP trains the past traces to obtain correlation rules
and uses these rules to do prefetching.

DMP Average Hit Rate

0 200 400 600 800 1000 1200 1400

0.4

0.5

0.6

0.7

0.8

0.9

1

cache s ize

hi
tra

te

per-user-oriented HP trace

LRU
OP T
NE XUS
NE W S CHE M E

0 200 400 600 800 1000 1200 1400
1

1.5

2

2.5

3

3.5

4

4.5

cache size

av
er

ag
e

re
sp

on
se

 ti
m

e(
m

s)

per-user-oriented HP trace

LRU
OPT
NEXUS
NEW SCHEME

DMP Average Response Time

Scalability: Fast Metadate Lookups
Decentralizing Metadata Management

• Given a humanly readable file name f∈F, function ψ
returns the home metadata server of f.

• Metrics:
– Lookup efficiency: How fast to locate the home metadata

server of a given file?
– Migration cost: Since metadata servers leave and join, does a

file’s metadata need to be relocated to implement ψ?
– Overhead: memory (space) and network (bandwidth) overhead

: F MΨ → :F Legible file names

:M Metadata servers

Basic Idea of Grouped-HBA (G-HBA)
• Basic idea: allow each MDS to maintain a

subset of replicas to achieve load balance
among multiple MDSs and space savings in
each MDS, and support dynamic MDS-based
and group-based operations.

• The benefits of G-HBA:
• Space savings;
• Strong scalability;
• Dynamic and adaptive operations;
• Fast update for stale replicas in remote MDSs;
• Higher query accuracy and lookup efficiency;
• Least migration amounts of replicas;

A Big Picture of G-HBA

LRU Bloom filters

Grouped Bloom filters

Size(group A) = 4

Size(group B) = 5

Size(group C) = 6

MDS: Metadata server

MDS

MDS

MDS

MDS

network
network

(1): local LRU query

(2): local query on
an MDS

(3): group multicast query

(4): global multicast query

Preliminary Results 1

Average query latency
comparisons between
HBA and G-HBA with

intensified HP2000 trace

Number of migrated replicas
among HBA, Hash-based

location and G-HBA

Preliminary Results 2

Latency for updating stale
replicas in remote MDSs

Comparisons of false
positive probabilities

between HBA and G-HBA

Prototyping & Tracing:
Scaling dCache for Large Hadron Collider (LHC)

• dCache is a large-scale storage system from
Deutsches Elektronen-Synchotron (DESY) and
FNAL.
– Originally designed as an HSM
– Now can run without tape backend
– Chosen by the CMS project for US sites.

• Distributed architecture to allow the system to
scale w.r.t. speed and number of connections.
– Each component is called a cell
– Not all cells are created equal!

24

Identifying Performance Bottlenecks

• We have instrumented two pieces of
dCache to collect traces.

• The metadata server (PNFS).
– Collect query, response, and time taken.
– Allows us to identify performance under load

and limits of the server.
• The inter-cell messaging system.

– Records destination, processing time and
message contents.

– Records queue length for each cell.

25

dCache Monitoring

• We have a web interface which allows for
realtime monitoring of PNFS performance.
– http://t2.unl.edu:8090/xml/
– Based upon above instrumentation

• Besides for watching individual
components, we can also watch individual
pool performance
– http://t2.unl.edu/srm_graphs/xml/

26

Initial Benefits
• Metadata trace information will enable

future project of writing new, high-
availability metadata server.

• Messaging information allows us to
identify components which are unable to
scale with increasing demand.

• Monitoring systems allows us to identify
hardware-related failures and quickly take
care of them. 28

One CD a Second
• As scalability work has done, we’re

approaching our goal of one CD a second
(6 Gbps)

29

Publications
• J. Yue, Y. Zhu and Z. Cai, "Evaluating Memory Energy Efficiency in Parallel I/O

Workloads", to appear in IEEE International Conference on Cluster Computing, 2007
• L. Tian, H. Jiang, D. Feng, Q. Xin and X. Shu, "Implementation and Evaluation of a

Popularity-Based Reconstruction Optimization Algorithm in Availability-Oriented Disk
Arrays", to appear in the Proceedings of the 24th IEEE Conference on Mass Storage
Systems and Technologies (MSST'07), San Diego, California, USA September 24-27,
2007

• Z. Niu, K. Zhou, D. Feng, H. Jiang, F. Wang, H. Chai, W. Xiao,and C. Li, “Implementing
and Evaluating Security Controls for an Object-Based Storage System”, to appear in the
Proceedings of the 24th IEEE Conference on Mass Storage Systems and Technologies
(MSST’07), San Diego, California, USA September 24-27, 2007.

• L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and Z. Song, "PRO: A
Popularity-based Multi-threaded Reconstruction Optimization for RAID-Structured Storage
Systems" in Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST '07), San Jose, CA, February 13-16, 2007

• Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: A Distributed Metadata Management
System for Large Cluster-based Storage", IEEE Transaction on Distributed and Parallel
Computing (under minor revision).

• Y. Zhu, and H. Jiang, "RACE: A Robust Adaptive Caching Strategy for Buffer Cache",
IEEE Transaction on Computers (accepted)

• P. Gu, J. Wang, Y. Zhu, and H. Jiang, "Nexus: A Novel Weighted-Graph-Based
Prefetching Algorithm for Metadata Servers in Petabyte-Scale Storage Systems," to be
submitted to IEEE Transactions on Parallel and Distributed Systems.

30

Personnel
Principle Investigators
• Dr. Hong Jiang, University of Nebraska
• Dr. Yifeng Zhu, University of Maine
• Dr. Jun Wang, University of Central Florida
• Dr. David Swanson, University of Nebraska

Personnel Supported
• Brian Bockleman, University of Nebraska
• Lin Lin, Ph.D. student at University of Nebraska
• Dongyuan Zhan, Ph.D. student at University of Nebraska
• Zhao Cai, University of Maine
• Jianhui Yue, University of Maine
• Peng Gu, University of Central Florida
• Huijun Zhu, University of Central Forida
• Dr. Xueming Li, a visiting scholar from China
• Lei Tian, a visiting research scholar from Huazhong Univerisity of Science

Technology, China
31

