The Wisconsin
PASS Project

Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau,
Ben Liblit, Miron Livny,
Michael Swift
University of Wisconsin, Madison

Our Goal:

Develop Technigues
for Building Robust & Reliable

File Systems

Current Efforts

Outline

/O Shepherding [sosP ‘07]

NTFS Study [StorageSS '06 + In Progress]
Error Propagation Analysis [in Progress]
Driver Refactoring [HotOS '07 + In Progress]
Latent Sector Study [Sigmetrics ‘07]

NFS Study [StorageSS ‘07]

/O Shepherding

Haryadi Gunawi (Wisconsin),
Vijayan Prabhakaran (MSR),
Shweta Krishnan (Wisconsin),

Andrea Arpaci-Dusseau,

Remzi Arpaci-Dusseau
(Wisconsin)

Typical Reliability Features

Fault Handling + Reliability Code

File System

e

/O Shepherding

File System

Generic Layer: I

Could work :
Under Many /O Shepherd—

File Systems
l Y 0

/O Shepherd

Inputs

« An |/O operation on a particular block type
e e.g., write inode X to address A

e Policy code
« Specifies how I/O should be handled

Shepherd

 Responsible for “care and feeding”
of 1/O as dictated by policy code

Specifying Policy: Policy Code

Example code

(DiskAddr D, MemAddr M)

If I0S_Read (D, M) == OK)

return OK;
else

IOS_Stop(I0S_HALT); // primitive

(DiskAddr D, MemAddr M)

for (int1=0; 1 < RETRY_MAX; i++)

If 1I0S_Read (D, M) == OK)

return OK;

return FAILURE:;

Code segment

« Enables fine-grained policies
(e.g., different treatment for metadata, data)

Loss of Information:

» Used to know lots of info
about each request

Shepherd: Add type info to each
request as it flows thru system

File System

[layout] cache

A

/O Shepherd

Disk scheduler

File layout:

* Policy wants to
make copy of a block

* Interface to FS layout
and allocation engine

Disk scheduling:

* Policy wants to
read a block or replica

Disk scheduler must
know possible locations

Caching:
 Don't pollute cache
with multiple copies

Shepherd must interact
with cache properly

A Multi-Level Policy

Everything works

compare
checksum
Inode

compare .
replica Policy

compare .
Chec_kgum Checksum

inode * Replica

e Semantic
repair

repair
compare

replica
compare
checksum
Inode

Time (ms)

Shepherding Summary

Shepherding goal
« Making reliability a first-class FS concern

Which boils down to
e Simple description of powerful policies
 Efficient implementation

Examples (not shown here):

o Adding checksums, mirrors, parity,
stronger sanity checks

« All well integrated with rest of system
(little overhead)

NTFS Study

Lakshmi Bairavasundaram,
Meenali Rungta,
Andrea Arpaci-Dusseau,

Remzi Arpaci-Dusseau, Mike Swift
(Wisconsin)

The Question

How does a commercial file system
react to corrupt data?

Case study: NTFS
 Modern file system
e Great deal of internal type information
« Also, some FS structure replication

Technigue: Pointer Corruption

Fault injection technique: Pointer
corruption

* Modify each on-disk pointer to point
to each other type of structure

e Observe reaction of file system

NOTS—]

Results: Graphical

Boot-MFTO OOOOOROOOOOOD00ORO00O0000EEE
Boot-MFTM pooooRO00000000OEO0O0000OERE
MFTO-MFT paEEEEREREECEEEENNORNEEEN00
MFT-Bitmap] H D
MFTO-MFTM] O[]
Logfile EEIREEEEREREREEREREREREER00
RootSecDesc O[0]
RootIndxBuf olololololololololololololollliol Tololollolol Tolol
SDS pEEEEEEEEEEEEEEEEEEEEEEEEEE

SDH pEErEEREERREEEEE & CEE CDERCE

]| Ill o Tc oo [ololololololololololo] Jolololololololo] ool

Upcase O[0] B EEE B EEE

DirIn_deuf o[ololo[o]ololololololoolo IC o [o[o ool _[o[o]
FileData —Jo[0]

B)Detects, Recovers Bl Detects, Corrupts BN/A

EDetects, Doesn’t No Detection,
Recover No Recovery

Results: Qualitative

Type checking is used frequently

« But often not enough (type overloading)

* Does not work for all types (e.g., FileData)
Limited sanity checks

* Not very consistent

Replication used to recover from corruption
e But sometimes propagates corruption

 And can't tell difference between target
corruption and pointer corruption

Loss of performance-aiding structures
IS catastrophic (could be rebuilt instead)

Error Propagation

Haryadi Gunawi, Cindy Rublo,
Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau, Ben Liblit
(Wisconsin)

The Problem

Problem: Lost Errors
* Low-level generates error (EIO)

« Somewhere before It gets reported,
file system loses the error

Causes many problems
o Can't tell if operation worked
* File system itself can’t detect/recover

How to find where these occur?

The Approach

Static source code analysis

* Look through source code for places
where error codes are lost

Built in CIL framework (from UCB)

* Error generation: Return value or arg

e Constructs channels: Flow of errors
back through call graph

e Determine if channel is “error complete”,
l.e., logs error, or takes recovery action

e All other channels marked “broken”

Results: Example

int sync_blockdev (block device *) {
intret =0, err;
ret = filemap_fdatewrite();
err = filemap_fdatawait();
if (ret) {
ret = err;
return ret;

}

int journal_recover (journal *) {
int err;

return err,

}

Overall Results

Results
e Linux ext2, ext3, JFS, ReiserFS

 Numerous paths where errors are lost
(over 90 In ext3 version we analyzed)

Automatic
Driver
Refactoring

Vinod Ganapathy,
Arini Balakrishnan,
Somesh Jha, Mike Swift

(Wisconsin)

The Problem

Drivers: Major cause of failure in systems
e 85% of failures in Windows XP

Why so bad?

 Fundemantally hard code to get right
» Subtle kernel interfaces
e Concurrency
e Locking

How can we improve this situation?

The Solution

Assumption
e The less kernel code, the better

Split drivers in two
e Kernel: performance critical

« Usermode: all other infrequently used
parts
(e.g., configuration, error handling)

But, how to achieve the split?

Automatic Splitting

e Analyze driver

ldentify “critical root functions” (CRFs)
* Interrupt handling, data transfer

Also, all routines that are called by CRFs
Mark all other code as non-critical

Generate split kernel/user code
Generate glue code for communication

Preliminary Results

Code removal: How much code can
be moved to user space”?
 Network: 72%

e SCSI: 74%
e Sound: 92%

Performance: How Is performance
affected by the split?

e Network: 6% overhead In worst case

Future Directions

Future Directions

Model-Checked Shepherd Policies
 Basic failure policies in place

e Does policy work as intended?
(can we that it does?)

« Can we use computational resources
to aid checking? (Condor)

Improved Error Propagation Analysis
e Currently somewhat primitive

* Problems: Asynchronous I/O,
complex transformations

Future Work

Analyze more file systems
e Sun ZFS
 NFS (Linux implementation)

e A cluster file system (still thinking about
which one ...)

Microdrivers
o Full implementation
 More drivers
« Performance analysis

Future Work

Reliability Analysis of WAFL (RAW)

* NetApp Write-Anywhere File System
(WAFL)

e 15 years of development

« Can we describe its fault-handling policy,
find flaws, etc.?

Corruption Study
* NetApp failure data
 How often do disks return corrupted data?

Current People (Students)

Lakshmi Bairavasundaram (Ph.D.)
e Disk study, NTFS, Corruption
Meenali Rungta (M.S., Google)
e NTFS
Haryadi Gunawi (Ph.D.)
« CFM, Error propagation
Shweta Krishnan (M.S., Cisco)
« CFM
Arini Balakrishnan (M.S., Sun)
e Microdrivers
Cindy Rubio (Ph.D.)
* Error propagation
Andrew Krioukov (Undergraduate)
« RAW

Questions?

