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Our Goal:

Develop Technigues
for Building Robust & Reliable

File Systems




Current Efforts




Outline

/O Shepherding [sosP ‘07]

NTFS Study [StorageSS '06 + In Progress]
Error Propagation Analysis [in Progress]
Driver Refactoring [HotOS '07 + In Progress]
Latent Sector Study [Sigmetrics ‘07]

NFS Study [StorageSS ‘07]
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Typical Reliability Features

Fault Handling + Reliability Code

File System
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/O Shepherding

File System
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/O Shepherd

Inputs

« An |/O operation on a particular block type
e e.g., write inode X to address A

e Policy code
« Specifies how I/O should be handled

Shepherd

 Responsible for “care and feeding”
of 1/O as dictated by policy code




Specifying Policy: Policy Code

Example code

(DiskAddr D, MemAddr M)

If I0S_Read (D, M) == OK)

return OK;
else

IOS_Stop(I0S_HALT); // primitive

(DiskAddr D, MemAddr M)

for (int1=0; 1 < RETRY_MAX; i++)

If 1I0S_Read (D, M) == OK)

return OK;

return FAILURE:;

Code segment

« Enables fine-grained policies
(e.g., different treatment for metadata, data)




Loss of Information:

» Used to know lots of info
about each request

Shepherd: Add type info to each
request as it flows thru system

File System

[ layout ] cache
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/O Shepherd

Disk scheduler

File layout:

* Policy wants to
make copy of a block

* Interface to FS layout
and allocation engine

Disk scheduling:

* Policy wants to
read a block or replica

Disk scheduler must
know possible locations

Caching:
 Don't pollute cache
with multiple copies

Shepherd must interact
with cache properly




A Multi-Level Policy

Everything works
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checksum
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Shepherding Summary

Shepherding goal
« Making reliability a first-class FS concern

Which boils down to
e Simple description of powerful policies
 Efficient implementation

Examples (not shown here):

o Adding checksums, mirrors, parity,
stronger sanity checks

« All well integrated with rest of system
(little overhead)
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The Question

How does a commercial file system
react to corrupt data?

Case study: NTFS
 Modern file system
e Great deal of internal type information
« Also, some FS structure replication




Technigue: Pointer Corruption

Fault injection technique: Pointer
corruption

* Modify each on-disk pointer to point
to each other type of structure

e Observe reaction of file system

NOTS— ]




Results: Graphical
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Results: Qualitative

Type checking is used frequently

« But often not enough (type overloading)

* Does not work for all types (e.g., FileData)
Limited sanity checks

* Not very consistent

Replication used to recover from corruption
e But sometimes propagates corruption

 And can't tell difference between target
corruption and pointer corruption

Loss of performance-aiding structures
IS catastrophic (could be rebuilt instead)
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The Problem

Problem: Lost Errors
* Low-level generates error (EIO)

« Somewhere before It gets reported,
file system loses the error

Causes many problems
o Can't tell if operation worked
* File system itself can’t detect/recover

How to find where these occur?




The Approach

Static source code analysis

* Look through source code for places
where error codes are lost

Built in CIL framework (from UCB)

* Error generation: Return value or arg

e Constructs channels: Flow of errors
back through call graph

e Determine if channel is “error complete”,
l.e., logs error, or takes recovery action

e All other channels marked “broken”




Results: Example

int sync_blockdev (block device *) {
intret =0, err;
ret = filemap_fdatewrite();
err = filemap_fdatawait();
if (ret) {
ret = err;
return ret;

}

int journal_recover (journal *) {
int err;

return err,

}




Overall Results

Results
e Linux ext2, ext3, JFS, ReiserFS

 Numerous paths where errors are lost
(over 90 In ext3 version we analyzed)
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The Problem

Drivers: Major cause of failure in systems
e 85% of failures in Windows XP

Why so bad?

 Fundemantally hard code to get right
» Subtle kernel interfaces
e Concurrency
e Locking

How can we improve this situation?




The Solution

Assumption
e The less kernel code, the better

Split drivers in two
e Kernel: performance critical

« Usermode: all other infrequently used
parts
(e.g., configuration, error handling)

But, how to achieve the split?




Automatic Splitting

e Analyze driver

ldentify “critical root functions” (CRFs)
* Interrupt handling, data transfer

Also, all routines that are called by CRFs
Mark all other code as non-critical

Generate split kernel/user code
Generate glue code for communication




Preliminary Results

Code removal: How much code can
be moved to user space”?
 Network: 72%

e SCSI: 74%
e Sound: 92%

Performance: How Is performance
affected by the split?

e Network: 6% overhead In worst case




Future Directions




Future Directions

Model-Checked Shepherd Policies
 Basic failure policies in place

e Does policy work as intended?
(can we that it does?)

« Can we use computational resources
to aid checking? (Condor)

Improved Error Propagation Analysis
e Currently somewhat primitive

* Problems: Asynchronous I/O,
complex transformations



Future Work

Analyze more file systems
e Sun ZFS
 NFS (Linux implementation)

e A cluster file system (still thinking about
which one ...)

Microdrivers
o Full implementation
 More drivers
« Performance analysis




Future Work

Reliability Analysis of WAFL (RAW)

* NetApp Write-Anywhere File System
(WAFL)

e 15 years of development

« Can we describe its fault-handling policy,
find flaws, etc.?

Corruption Study
* NetApp failure data
 How often do disks return corrupted data?







Current People (Students)

Lakshmi Bairavasundaram (Ph.D.)
e Disk study, NTFS, Corruption
Meenali Rungta (M.S., Google)
e NTFS
Haryadi Gunawi (Ph.D.)
« CFM, Error propagation
Shweta Krishnan (M.S., Cisco)
« CFM
Arini Balakrishnan (M.S., Sun)
e Microdrivers
Cindy Rubio (Ph.D.)
* Error propagation
Andrew Krioukov (Undergraduate)
« RAW




Questions?




