s*S/
¢/

HECURA: THE SERVER PUSH-IO
ARCHITECTURE FOR HIGH-END COMPUTING

Xian-He Sun
William Gropp, Rajeev Thakur

[linois Institute of Technology
Argonne National Laboratory
sun@iit.edu

The Problem: /O Bottleneck

O Poor Parallel I/O performance
for complex non-contiguous
access

O Improving the performance of
large number of small I/O
requests is a hecessity

O Prefetching — fetch data before
a client demands for it

O Limitations of Existing
Prefetching

Conservative and limited to static
prediction strategies

No prediction strategy on when
to prefetch

Only works for simple access
patterns with locality

2 T & ANL

1.E+07
1.E+06

[+
® 1.E+05 |

]
S 1.E+04

=
% 1-E+03 -

@
g 1.E+02

~ 1.E+01 -

1.E+00

08/07/2007

The Challenge Of Prefetching

» Move data closer to the processor before it is demanded

» Challenges
What data should be prefetched?
Costly, only use the simple one
When should prefetching occur?
Costly, no try

1/O Compute 1/O Compute 1/O Compute Compute Compute
1 1 7 | 1 1 7
I B
Prefetch Prefetch
time time

3 T & ANL 08/07/2007 A

vV Vv

v

v

v

Our Solution: File Access Server (FAS)

Trade computing power with data access
A “dedicated” server pro-actively “pushes” required data in time
Push: data is sent before the client’s I/O request
In time: data arrives the destination within a window of time
Use of adaptive and advanced prediction algorithms
Selects I/O access prediction algorithms adaptively
Prefetch Engine
What to prefetch
When to prefetch
Pushing data
Server issues prefetch instructions
Pushes the data from disk to prefetch cache at client

4 T & ANL 08/07/2007

FAS Enabled Parallel I/O

Application

Compute Mode 1 Compute Node 2

Application

Compute Node E

Application

D D D
E E E
¥ A v iy v A
L2 lepl M L2 »| I L2 »| M
L F 3 F 3
10 Req v 1l Diata 10 Reqg v : Diata (8] R_Eq1 I Diata
/O Re /O Re
i Data & Data
FAS Mode FAS Node
] v
I/ BS If'0 PS
Prefetch Prefetch
Engine Engine
RIS EMIS
Fs Diata P Diata

IIT & ANL

v

File Access Server is on
/O servers

Push data from disk to
compute nodes

08/07/2007

One Year Achievement

Project Organization

» Research Team

Pl and Co-Pls: Drs. Xian-He Sun, Bill Gropp, Rajeev Thakur

| full-time postdoc researcher: Dr. Surendra Byna
2 Ph.D. students: Yong Chen, Gregor Tamindzija

Dr. Byna is located at ANL
Dr. Sun is an ANL guest faculty, Mr. Chen has a long term ANL pass

» Communication

Push-10 Wiki
Biweekly Meeting at Argonne

6 T & ANL 08/07/2007

Research Activity

» Survey of applications and benchmarks

» Software architecture
Integrated global design

Low-level component design

New component: Helper thread

» What data to fetch

Pattern classification

Prediction algorithm selection

» Implementation

Trace collection
Data access pattern identification
Prediction algorithm

Client cache

Pre-execution threads
7 T & ANL 08/07/2007 A

survey: I/O benchmarks and applications

» Studied varies benchmarks to find large number of
small I/O accesses, complex I/O patterns

» Benchmarks
pio-bench, mpi_tile_io, mpi_io_test, flash-io-bench, NPB BTIO, LU

» Applications
mpqc, NaSt3dGP, mpiBLAST
CCSM (Community Climate System Model) application

» Suggestions on more applications with complex I/O patterns
are welcome

8 T & ANL 08/07/2007

Software Architecture of FAS (implementation)

» On each I/O node of PVFS, FAS

observes |I/O accesses
predicts future access

pushes predicted data into a separate client prefetch cache
This design is for one server and one client

Fila Accass Sarvar
1/0 Hints Pool

Hint2Request

Converter Compiler Hints

Post-execution
Hints

o Prefetch
Prediction Strategy
Selector

Prefetch
Predictor

Request 110 Request
Generataor Trace
Buffer

prafatch

reguests

Prafetch gueue

9 IIT & ANL

. Data _oush{}_
Propeller

PVFS2

Client

Process

e}
rejuest
cache

«—
e
U15p pagalaid

Storage T

08/07/2007

A

Using Pre-execution Hints

» Planning on using pre-execution hints

10

|dentify future 1/O accesses via speculatively pre-executing slices of code

Pre-execution thread generation by using a Source-to-source compiler

Helper threads run ahead of actual execution

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
!
|
I
!
|
|
}

File Access Server
1/0 Hints Pool

Helper

Helper Thread =
Hints

Converter Compiler Hints

Post-execution
Hints

|

|

|

|

T

|

. |
Hint2Request |
|

|

|

|

Prefetch |

Prediction Strategy |
Engine Selector 1
Prefetch
Predictor

PVFS2

Generator I Trace

Buffer

5 Data
Propeller

Prefetch queue

prefetch

|
|
Request 1/Q Request :
|
|
!
requests I

IIT & ANL

Process

|
|

|

1

|

|

|

|

|

| /0

| request
|

|

|

|

L

Storage

ETET i

T biap payala

08/07/2007

Adaptive and Aggressive Prefetching

» Multi-dimensional

location of data, the amount of data, the mode of accessing data,
and strides

Time between any two accesses, between successive accesses to a
specific data block

» Aggressive Prefetching
Overhead to predict the future accesses is no longer a issue

New aggressive methods to predict irregular data accesses
» Adapt a prefetch strategy based on the data access pattern

» Reduce prediction time by using hints provided by compiler
and application/user

11 T & ANL 08/07/2007

Pattern Classification

» Comprehensive I/O access pattern classification

12

/ Spatial Patterns \

U Contiguous

LNon-contiguous

"Fixed strided

»2d-strided

=Negative strided

"Regular kd-strided

=Random strided

U Combination of contiguous and

-

Request size

~

Qn-contiguous patterns /

Repetition

USingle occurrence
URepeating

T & ANL

U Variable

_ O Small
[D Fixed } O Medium

O Large

I
-

-~

Temporal Intervals

UFixed
UJRandom

\

1/O Operation

URead only
UWrite only
_Read/write

J

08/07/2007

A

Pattern Prediction Algorithms

» Simple stride prediction algorithm
» k-d stride prediction algorithm

» Markov model prediction

» Multi-level difference table

» Time series analysis

» Artificial Neural Networks

13 T & ANL 08/07/2007

Prediction Method Selection

Selection algorithm for choosing prediction method

Prediction engine has learning, prediction and supervision
states

When a file is opened for file operations, prediction method
enters learning state

Once a steady pattern is found, prediction state calculates
future 1/O accesses

Supervision state observes pattern changes and feedback from
traces in order to choose a different prediction algorithm on-
the-fly

14 T & ANL 08/07/2007

In the prediction state...

Pattern signature: Defines pattern

{init position, dimension, ([{stride pattern}, {request size pattern}, {number of
repetitions pattern}], [...]), # of repetitions}

Example: {1024, 1, (4096, 1024, 99), 1}, {2048, 1, (8192, 2048, 99) 1}, {4096, 1,
(16384, 4096, 99),1}, {8192, 1, (32768, 8192, 99),1},

Example: {4096, 2, ([2048, 1024, 1], [6144, 1024, 1]), 99}, {8192, 2, ([4096,
2048, 1], [12288, 2048,1], 99!

Supervision state updates # of reps

As the number of repetitions increase, the sampling distance of trace
observation increases

. Initial Pattern Prediction |
Fileid . . State
position signature | method

'
| Calculate
Prefetch p—u

\k Address

15 T & ANL 08/07/2007 A

Implementation of FAS

» Implementation of Prediction Engine
» Implementation of creating pre-execution thread

» Testing full cycle of FAS
Test results will be published

» Implementation of hints pool and using hints

» Long term goal
Implementation FAS into PVFS2

16 T & ANL 08/07/2007

[/O Access Tracing

» Capturing I/O requests at clients
» File /O calls

Wrapper functions for open, read, fread, fseek, and
close

» Using Profile MPI (PMPI) to wrap the following MPI-
|O functions

MPI_File read, MPI_File_iread, MPI_File read at,
MPI_File read all, MPI File seek

» Fields of I/O Request Trace Buffer

Process ID, File Descriptor, File Position, Number of
bytes, Timestamp, File operation

17 T & ANL 08/07/2007

Sample trace

Proc ID Rank File # File Pos # of Bytes Time(s) I/0 Op Pio-benCh Wlth nested Stl‘lde test
29074 0 16 0 1024 7.501304 MPI_READALL
29074 0 16 2048 45113 MPI_READALL
29074 O 16 SM 1024 7.588820 .
29074 O 16 10240 7.629080 2k Strlde
29074 O 16 16384 MPI_READALL
29074 O 16 18432 MPI_READALL
29074 O 16 24576 MPI_READALL
29074 O 16 26624 1024
29074 O 16 32768 1024 7.849006
29074 O 16 34816 1024 7.889342 MPI_READALL 6k Strlde
29074 O 16 40960 1024 7.933130 MPI_READALL
29074 0 16 43008 1024 7.977495 MPI_READALL
29074 O 16 49152 1024 8.021255 MPI_READALL
29074 O 16 51200 1024 8.065650 MPI_READALL
29074 O 16 57344 1024 8.109380 MPI_READALL
29074 O 16 59392 1024 8.153768 MPI_READALL
29074 O 16 65536 1024 8.197396 MPI_READALL
29074 O 16 67584 1024 8.241783 MPI_READALL
29074 O 16 73728 1024 8.285514 MPI_READALL
29074 0 16 75776 1024 8.331166 MPI_READALL
29074 O 16 81920 1024 8.373678 MPI_READALL
29074 0 16 83968 1024 8.418154 MPI_READALL
29074 O 16 90112 1024 8.461751 MPI_READALL
18 T & ANL 08/07/2007

Initial Performance Results

» Prefetching using offline I/O hints

» Testing environment

Collective caching code borrowed from Wei-keng Liao at Northwestern Univ.

Cache size: 32 MB, Cache page size: 64 KB, File system: NFS

of /O Page |Page fault| Prediction
Benchmark Pattern signature Reads fault rate| rate with | overhead
(%) FAS (%) | (seconds)
PIO-Bench, Sstm;l)e strided (4K | \iT 1. (4096, 1024, 199)} | 200 7% 2% 0.00036
P10-Bench, simple strided (16k) | {INIT, 1, (8192, 1024, 199)} 200 25% 2% 0.00036
P10-Bench, simple strided (32k) | {INIT, 1, (16384, 1024, 199)} 200 50% 2% 0.00036
PIO-Bench, 2'4”&5"8 strided (> | \iT, 1, (32768, 1024, 199)} | 200 | 100% 2% 0.00036
P10-Bench, nested strided (4k, |{INIT, 2, ({-, 1, (4096, 1)}, {-, 1, 0 0
12K) (12288, 1)}, 99)} 200 15% 4% 0.0004
P10O-Bench, nested strided (16k, | {INIT, 2, ({-, 1, (16384, 1)}, {-, 0 .
48k) 1, (49152, 1)}, 99)} 200 50% 4% 0.0004
P1O-Bench, nested strided (64k, | {INIT, 2, ({-, 1, (65536, 1)}, {-, 1, .
192K) (196608, 1)}, 99)} 200 100% 4% 0.0004
LU decomposition, out-of-core {0, 3, ({1049088, 1, (524544, 1)}, {0,
(8192 x 8192 double precison 1, (522368, 1)}, {524544, 1, 8252 76% 0% 0.0091
matrix) ({518272, (-4096)}, {1, (1)})}, 125}
BTIO (Class B, 16 processors) {INIT, 1, (42450944, 5308416, 40 100% 10% 0.00024

39)}

Conclusions

» Progress

Design of Software Architecture, with new component
Exciting technical finding: pattern, signature, algorithm
Implementation progress well (prediction, pre-execution)
Benefit of Academic-Lab collaboration, more collaboration

» Next steps

20

Finish the one-cycle implementation

Testing and improvement

Include more components, such as the hint generators,
Finish and integrate pre-execution hints

Full development

T & ANL 08/07/2007

21

Thank you!

Questions!?

T & ANL

08/07/2007

22

» Backup slides

T & ANL

08/07/2007

FAS: COMPONENTS

23

Prefetch Strategy Selector: adaptively selects an appropriate method to
predict future accesses from

Compiler hints
Post-execution analysis
Pattern prediction algorithms

Hint2Request converter: converts hints to I/O requests and keeps them in
prefetch queue

Tracer: traces I/O requests and stores them in an I/O request trace buffer

Prefetch predictor: decides what data to push using pattern prediction
algorithms

Request generator: decides when to push the data

Data propeller: validates prefetching requests for expiration and issues push
instruction to move data from disk to prefetch cache

T & ANL 4/26/2007 A

More on Pre-execution Hints

» Pre-execution is useful, when access patterns are unknown or accesses
are irregular or random

» An example, where periodic reads (R2, R3 and R4) latency are
completely masked

» Pre-execution thread can run
Utilizing idle cycles
Competing with regular computation process
Pre-executing remotely

Normal execution c1 c2 c3 Cc4
4 A A T
v R1---------- | AS—— R2---------4 v R3---------- | A R4-------—-
C1 Cc2 | C3 | c4
4 A A A
With speculative \ A R
prefetching ' R2---———--_]
c2
————— R3
C3

c4
24 1T & ANL 08/07/2007 A

A Simple System: Current Focus

» Working on understanding I/O access patterns

» Developing algorithms for adaptive prefetching method selection

» Testing “push” strategy from PVFS to client nodes

File Accass Sarver

v |
Prefetch b2kt '—@’———

Strateay

Trace
Selector Buffer

Cliant

Process

Fle}
request

Prediction —
Engine
PVFS2 -
Prefetch ;E
Predictor E"
g a
g x
Request 158
Generator g.
prefetch 4+ | 5
reguests Py i
Data I N -
Propeller pu‘gﬁ 7} > Storage I
Prefetch gueue
25 T & ANL 08/07/2007

A

