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Motivation

*Petascale computing is coming
* Orders of magnitude more components
 Orders of magnitude more failures

Need raw data for better understanding of failures
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The computer failure data repository (CFDR)

Gather & publish real
failure data

Community effort
» Usenix clearinghouse

Data on all aspects of
system failure

Anonymized as needed
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ComputerFailre ~ The computer failure data repository (CFDR)
Data Repository

¢ Home
_ With the growing scale of todays [T installations, companent failure is becoming
o News an ever larger problem. Yet, virtually no data on failures in real systems is publicly
+ Resources avallable, forcing researchers working on system reliability to base ‘tlheir wark on
anecdotes and back of the envelope calculations, rather than empirical data,
+ Data 1 I
o Best Practices The cumpgtelrlfailure dgta repository (CFDR) aims at accelerqting resegrch on-
- system reliability by filing the nearly empty collection of public data with dztailed
+ FAQ failure data from a variety of large production systems,
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» Contact Us News

You are viewing a first draft of the CFDR, For feedback and comments please
contact the moderators,
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9 years of

node outages

[DSN’06,TDSC]
[SCiDAC'07]

Error logs —»I‘ HFC4

[DSN'07]

/0 specific
failures
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Avallable dat\a

* Downloaded 900 times in 6 months
» Used in at least 3 SC’'07 papers
* Please send us pointers!
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HPZ
clusters

The data covers node outages at 22 cluster systems at
LAMWL, including a total of 4,750 nodes and 24,101
processors. Gome job logs and error logs are available
as well.

The data covers hardware replacements at a 765 node

L IS cluster with more than 3,000 hard drives.

HEC2 || Tan 04.- Jul 06 HEC chuster Hf.m:i drive replacements in a 256 node cluster with 520
Ea— drives.

HFO3 | Dec 05 - Mov 06 HEC chaster Hard drive replacements observed it a 1,532-node HPC

cluster with more than 14,000 drives.

2004 - 2006

HPC cluster

Error logs collected at 5 supercomputing systems at
SHL and LLL, ranging from 512 to 1531072 processors.

PHIL

MWow 03 - Sep 07

HPC cluster

Hardhwrare failures recorded on the WEPPZ system (a 950
node HPC cluastet) at FITHL.

MEERSC

2001 - 2006

HPC cluster

15D specific failures collected at a mumber of
production systems at NERSC,

| .

Data not available (yet):

* [FAST'07 Google] study of hard drive replacements
* [Sigmetrics’07 NetApp] study of media errors
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How often do drives really fail?

 Vendor datasheets: Annual replacement rates
(ARR) of 0.58 - 0.88 %
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* Field replacement rates are significantly higher than what
vendor datasheets suggest



How often do drives really fail?

 Vendor datasheets: Annual replacement rates
(ARR) of 0.58 - 0.88 %
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No evidence that SATA disks exhibit higher replacement
rates than SCSI or FC disks



Replacement rate as a function of age - model
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ARR (%)

Replacement rate as a function of age
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e Wear-out seems to set in earlier than often assumed

* Infant mortality not significant



Statistical properties of time between failure?

« Common assumption: Time between failure follows an
exponential distribution

 Real data does not follow exponential distribution
« Variability is higher (C° = 2.5 -12)

» Welibull distribution with shape parameter s <1 is better fit
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.. - - Cluster node outages
Statistical properties of time [TDSC 07] Joint wi Gibson
7000
» Common assumption: Time between| data 7
exponential distribution | e
. 3000 -
 Real data does not follow exponentii |~ Exponential
. Variability is higher (C?= 2.5 -12)
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» First published data that allows rejection of exponential
assumption for time between drive failures



Statistical properties of time between failure

« Common assumption: Failures are independent

 Real data shows correlations at various levels including
« auto-correlation
* long-range dependence.
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Many common assumptions not realistic

*Repl. rates higher than specs

1 "Bathtub” Data |
model :

2 3 4
Years of operation

« Bathtub” model not realistic

Dat

Autocorrelation
o

Exponential

*Time between

failure not exponential ~ eFailures not independent

Important to work I
with real data! 4




Estimating probability of data loss in RAID

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
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Estimating probability of data loss in RAID

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution

] Estimate based on data
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Estimating probability of data loss in RAID

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
I Use measured MTTF and exponential distribution

[ ] Estimate based on data
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Estimating probability of data loss in RAID

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
I Use measured MTTF and exponential distribution

Use measured MTTF and Welbull distribution

] Estimate based on data
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Estimating probability of data loss in RAID

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
I Use measured MTTF and exponential distribution

Use measured MTTF and Weibull distribution

] Estimate based on data
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Conclusion

Many challenges in Petascale reliability ahead
Failures don’t always look as expected
Sharing failure data powerful for systems research

Need to continue to collect & publish more data!

THANKS to those who have contributed data!!!

18



Do you have any data

to contribute?

Contact us:
{bianca,garth}@cs.cmu.edu

Questions?
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Petascale projections

e Continued top500.org annual 2X peak FLOPS
 Setto 1l PF plan for ORNL Baker, LANL Roadrunner in 2008

* Cycle time flat; Cores/chip on Moore’s law
o Consider 2X cores per chip every 18, 24, 30 months
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Petascale projections: future MTTIs
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Failure rate grows with number of chips
« Stable over time

* Assume optimistic 0.1 failures per year
per socket (vs. historic 0.25)
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Petascale projections: app’s utilization

Periodic (p) app pause to capture checkpoint (t)
On falilure, roll back & restart from checkpoint

Balanced: Mem, disk speed track FLOPS (constant t)
e 1-Apputil=t/p+p/(@2*MTTI); p2=2*t* MTTI
« If MTTI was constant, app utilization would be too
But MTTI drops 100%

So Application
utilization drops

Half machine
gone soon

Not acceptable
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50%

25%

Application Utilization (%26)
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Storage bandwidth to the rescue?

Increase storage bandwidth to counter for MTTI?

First, balance means storage bandwidth tracks
FLOPS, 2X per year, but disks 20% faster each year

 Number of disks up 67% each year just for balance
Doesn’t counter MTTI

. #Disks up 130% /year! 18 monthe /
« Faster than sockets, 00000 4 months =
faster than FLOPS! 10,000 —30 months %
« If system cost grows as 1,000
# d?/sks Vs # so%kets oo /
e Total costs increasingly /
going into storage b
(even just for balance) 1

24



Applications squeeze checkpoints?

So far, assumed checkpoint size iIs memory
Could Apps counter MTTI with compression?

Size of checkpoint has to decrease with MTTI
« Smaller fraction of memory with each machine
e Drop 25-50% per year

Soon only 50% memory in checkpoint ...
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While on storage issues ...

Increasing disk bandwidth: more disks & disk failures
« Data shows 3% per year are replaced

RAID (level 5, 6 or stronger codes) protect data
« At cost of online reconstruction of all lost data
« Larger disks: longer reconstructions, hours become days

Consider # concurrent

reconstructions 1000.0

10-20% now, but .... -
Soon 100s of concurrent /
reconstructions 10.0

Storage does not have /

checkpoint/restart model
Design normal case 0.1

' SR N SO SN NN S\ N NN
for many failures £ PP S
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Smaller applications escape
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Change fault tolerance scheme?

Classic reliable computing: process-pairs

» Distributed, parallel simulation as
transaction (message) processing

o Automation possible w/ hypervisors
Deliver all incoming messages to both
Match outgoing messages from both

50% hardware overhead
+ slowdown from synch

But if App Utilization is
falling under 50% anyway

No stopping to checkpoint

e Less pressure on storage
bandwidth except for
visualization checkpoints

100%

75%

50%

A NonStop* Kernel

Joel F. Bartlett
Tandem Computers Inc.

Abstract @ 1981 ACM 0-89791-062-1-12/81-0022

The Tandem NonStop System is a fault-
tolerant [1l], expandable, and distributed
computer system designed expressly for
online transaction processing. This paper
describes the key primitives of the kernel
of the operating system. The first section
describes the basic hardware building
blocks and introduces their software
analogs: processes and messages. Using
these primitives, a mechanism that allows
fault-tolerant resource access, the
process-pair, is described. The paper
concludes with some observations on this
type of system structure and on actual use
of the system.
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Probability of losing data in a RAID?

Storage system
(RAID)

e Depends on probability that after one drive fails, a second
drive fails while reconstructing data.
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Estimating probability of data loss

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
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Estimating probability of data loss

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution

] Estimate based on data
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Estimating probability of data loss

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
I Use measured MTTF and exponential distribution

[ ] Estimate based on data

1
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N W B~ O O

1
0 -
1 hour reconstruction time
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Estimating probability of data loss

« Depends on probability of second failure during reconstruction

I Standard approach: Use datasheet MTTF and exponential distribution
I Use measured MTTF and exponential distribution

Use measured MTTF and Welbull distribution

] Estimate based on data
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