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Energy Usage in Data Centers

As machines/cores/clock rate increase, we 
are using more and more energy.
As load increases, the machines get hotter 
and we expend significant energy ($) in 
cooling the data center. 
Can we reduce energy costs by selectively 
shutting off machines (sleep state) OR by 
clever load balancing (data replication)?



Different aspects of our project

Optimize Energy Usage for large scale data 
processing applications.
Consider load on processors, disks,  and 
thermal effects due to adjacent processors.
Total Energy used is a function of load as 
well as cooling energy required (a significant 
part of the total energy used).



Different Aspects of the Project

Machine activation: some components may 
be shut off completely to save energy.
Data Layout: exploiting locality of data 
access.
Load rebalancing: power consumed directly 
depends on workload, this can be reduced by 
rebalancing workload -- consider thermal 
effects from adjacent processors while 
defining load distribution policy.



Machine Activation

Traditional scheduling theory deals with a 
given set of jobs, machines and constraints 
on jobs (deadlines, release times etc).
We add a new dimension with “activation 
cost” for each machine – given an activation 
cost budget, which subset of machines 
should we activate so that we can find a good 
schedule on the set of active machines?



Machine Activation Results

Many scheduling problems are NP-hard – we 
develop and analyze heuristics for these 
problems, mainly focusing on approximation 
algorithms.
Ideally, we would like to be able to do this in 
an ONLINE setting – where jobs are arriving 
and departing over time. 
Workload is typically cyclical, with infrequent 
peaks and deep valleys.



Data Layout Optimization

We assume a very general framework
We have a large collection of data items and need 
to process a collection of queries.
Each query Qi needs to access a subset Si of the 
data items.
The cost for each query is the number of storage 
units (disks, memory banks etc.) that it needs to 
access to run the query.



Data Layout Optimization

Queries are as follows:
Q1={A,B,D,C} cost(Q1) =2
Q2={B,F,G} cost(Q2)=2
Q3={C,D,E} cost(Q3)=1
Q4={F,G} cost(Q4)=1
Q5={A,B,F,G} cost(Q5)=2
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A DIFFERENT LAYOUT MAY HAVE A DIFFERENT COST



Preliminary Results for Data Placement

HMETIS: State-of-the-art Hypergraph Partitioning Algorithm

LMBR: A greedy algorithm that does sophisticated local moves

Significant energy savings by doing workload-driven optimization
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Model it as a Hyper-graph problem



Scheduling Optimization (fixed layout)

Queries have a release time and a deadline 
and unit processing time. 
We need to process all the queries, and 
when we schedule a query we need to 
activate the memory banks that  contain the 
data that the query needs to run. 
At each time step we can run upto P queries.
How can we run the queries using the least 
amount of energy?



Scheduling Queries

Goal is to activate memory to answer the queries and to 
minimize memory activation.
Memory has two states – sleep state and active state.
Again the resulting problem is NP-hard, we develop a new 
heuristic for the problem.
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Thermal effects

Power consumed depends on workload and the 
primary goal is to ensure that the max temperature 
is not very high. 
However temperature is a function of local load and 
load on close machines.
Clever load balancing lets us raise the temperature 
of the incoming air from the cooling system and 
reduces AC cost significantly (saving energy).
We study workload balancing by exploiting the fact 
that several copies of the data are present. 



Datacenter thermal model

Relationship between power consumption of a data node on chassis, and its 
inlet, outlet air temperature (Tsup: temperature of the cooling air produced by 
A/C):

Disk power consumption on data nodes (Pi is constant since we assume 
disks work on same speed):
A/C power consumption:
Total power consumption:

HVAC
Rack

Chassis

Inlet cold air 
of chassis (Tin)

Outlet hot air of 
chassis (Tout)



Load Balancing 
Given: n data nodes, d data intensive tasks, each task takes 1 unit of 
time to execute, the deadlines for the tasks range from 1 to q:

We would like to assign 
each data access task to 
a data node containing 
the data it needs, so that 
each task can read its 
required data locally. 
We would like to minimize 
the power consumption of 
the system, while 
ensuring the temperature 
of data nodes to be within 
the maximum constraint.
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Solve ILP with minimum cost flow
source nodes ①②
represent tasks (flow 
available = 1). 
transshipment nodes 
represent data nodes in 
datacenter. Each data 
node is replicated q times 
(q=2 in this figure, data 
nodes in replica 1 or 2 
indicate the data nodes at 
time 1 or 2.)
sink node      (demand = 
number of tasks)

Edges: 
task → data node storing the data this task needs and whose 
corresponding deadline is not larger than the deadline of this 
task (capacity 1, cost 0). 
data node i→ sink node (capacity 1, cost: cost(i))
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Results

Mean(Tout) is the average outlet air temperature of chassis on different 
racks; stdev(Tout) is the standard deviation of outlet air temperature of 
chassis on different racks
The system power consumption in our method is lower than random method 
by 28.13% on average. 



Thermal Profiles in a Data Center

Simulated thermal profiles 5 minutes apart
Processing units located at the grid points
Standard power dissipation model assumed

Large, rapidly changing temperature variations



Spatially-aware Optimization

Comparing the performance of a greedy heuristic for task 
assignment: NAÏVE ignores spatial locality, SMART doesn’t

Max effective workload roughly correlated with the node temperature
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Work done so far

Khuller, Li, Saha “Machine activation 
problems” SODA 2010.
Shi, Srivastava “Thermal and Power aware 
task scheduling” Green Computing 2010.
Deshpande, Khuller, Srivastava “A Case for 
Spatially-aware Optimization in Data Centers”
manuscript.
Deshpande, Khuller, Kumar, Saha “Data 
layout optimization for energy efficient query 
processing” in progress.



Next Steps

Since the algorithms give good performance 
on simulated data, the next step would be to 
develop robust code that would go into 
software for managing workload on data 
centers.
Develop a better understanding of this new 
class of optimization problems.
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