
Optimization Algorithms for
Large-scale, Thermal-aware
Storage Systems

Amol Deshpande
Samir Khuller
Ankur Srivastava

UNIVERSITY OF MARYLAND
Supported by NSF HECURA 2009-2012

Energy Usage in Data Centers

As machines/cores/clock rate increase, we
are using more and more energy.
As load increases, the machines get hotter
and we expend significant energy ($) in
cooling the data center.
Can we reduce energy costs by selectively
shutting off machines (sleep state) OR by
clever load balancing (data replication)?

Different aspects of our project

Optimize Energy Usage for large scale data
processing applications.
Consider load on processors, disks, and
thermal effects due to adjacent processors.
Total Energy used is a function of load as
well as cooling energy required (a significant
part of the total energy used).

Different Aspects of the Project

Machine activation: some components may
be shut off completely to save energy.
Data Layout: exploiting locality of data
access.
Load rebalancing: power consumed directly
depends on workload, this can be reduced by
rebalancing workload -- consider thermal
effects from adjacent processors while
defining load distribution policy.

Machine Activation

Traditional scheduling theory deals with a
given set of jobs, machines and constraints
on jobs (deadlines, release times etc).
We add a new dimension with “activation
cost” for each machine – given an activation
cost budget, which subset of machines
should we activate so that we can find a good
schedule on the set of active machines?

Machine Activation Results

Many scheduling problems are NP-hard – we
develop and analyze heuristics for these
problems, mainly focusing on approximation
algorithms.
Ideally, we would like to be able to do this in
an ONLINE setting – where jobs are arriving
and departing over time.
Workload is typically cyclical, with infrequent
peaks and deep valleys.

Data Layout Optimization

We assume a very general framework
We have a large collection of data items and need
to process a collection of queries.
Each query Qi needs to access a subset Si of the
data items.
The cost for each query is the number of storage
units (disks, memory banks etc.) that it needs to
access to run the query.

Data Layout Optimization

Queries are as follows:
Q1={A,B,D,C} cost(Q1) =2
Q2={B,F,G} cost(Q2)=2
Q3={C,D,E} cost(Q3)=1
Q4={F,G} cost(Q4)=1
Q5={A,B,F,G} cost(Q5)=2

A FD
B

C

E

C

G

B

A DIFFERENT LAYOUT MAY HAVE A DIFFERENT COST

Preliminary Results for Data Placement

HMETIS: State-of-the-art Hypergraph Partitioning Algorithm

LMBR: A greedy algorithm that does sophisticated local moves

Significant energy savings by doing workload-driven optimization

Preliminary Results for Data Placement

HMETIS: State-of-the-art Hypergraph Partitioning Algorithm

LMBR: A greedy algorithm that does sophisticated local moves

Significant energy savings by doing workload-driven optimization

Model it as a Hyper-graph problem

Scheduling Optimization (fixed layout)

Queries have a release time and a deadline
and unit processing time.
We need to process all the queries, and
when we schedule a query we need to
activate the memory banks that contain the
data that the query needs to run.
At each time step we can run upto P queries.
How can we run the queries using the least
amount of energy?

Scheduling Queries

Goal is to activate memory to answer the queries and to
minimize memory activation.
Memory has two states – sleep state and active state.
Again the resulting problem is NP-hard, we develop a new
heuristic for the problem.

A
B

C
B

C
D E

D CA B B E
M1 M2

M1 M2

Thermal effects

Power consumed depends on workload and the
primary goal is to ensure that the max temperature
is not very high.
However temperature is a function of local load and
load on close machines.
Clever load balancing lets us raise the temperature
of the incoming air from the cooling system and
reduces AC cost significantly (saving energy).
We study workload balancing by exploiting the fact
that several copies of the data are present.

Datacenter thermal model

Relationship between power consumption of a data node on chassis, and its
inlet, outlet air temperature (Tsup: temperature of the cooling air produced by
A/C):

Disk power consumption on data nodes (Pi is constant since we assume
disks work on same speed):
A/C power consumption:
Total power consumption:

HVAC
Rack

Chassis

Inlet cold air
of chassis (Tin)

Outlet hot air of
chassis (Tout)

Load Balancing
Given: n data nodes, d data intensive tasks, each task takes 1 unit of
time to execute, the deadlines for the tasks range from 1 to q:

We would like to assign
each data access task to
a data node containing
the data it needs, so that
each task can read its
required data locally.
We would like to minimize
the power consumption of
the system, while
ensuring the temperature
of data nodes to be within
the maximum constraint.

tasks data nodes

deadline=3

deadline=3
deadline=1

deadline=4
deadline=2

t=1 t=2 t=3 t=4

time

Solve ILP with minimum cost flow
source nodes ①②
represent tasks (flow
available = 1).
transshipment nodes
represent data nodes in
datacenter. Each data
node is replicated q times
(q=2 in this figure, data
nodes in replica 1 or 2
indicate the data nodes at
time 1 or 2.)
sink node (demand =
number of tasks)

Edges:
task → data node storing the data this task needs and whose
corresponding deadline is not larger than the deadline of this
task (capacity 1, cost 0).
data node i→ sink node (capacity 1, cost: cost(i))

1 2Task

Node 1 2 3 4 5 6

t

cost1
cost2

cost3
cost4
cost5
cost6
cost7
cost8

7 8 1 2 3 4 5 6 7 8
co

st 1
co

st 2
co

st 3co
st 4

co
st 5

cost6
cost7

cost8

Replica 1 Replica 2

Data nodes 4,6,7
contains the data

task 2 needs;
deadline(task 2)=2

Data nodes 1,3,5
contains the data

task1 needs;
deadline(task 1)=1

Results

Mean(Tout) is the average outlet air temperature of chassis on different
racks; stdev(Tout) is the standard deviation of outlet air temperature of
chassis on different racks
The system power consumption in our method is lower than random method
by 28.13% on average.

Thermal Profiles in a Data Center

Simulated thermal profiles 5 minutes apart
Processing units located at the grid points
Standard power dissipation model assumed

Large, rapidly changing temperature variations

Spatially-aware Optimization

Comparing the performance of a greedy heuristic for task
assignment: NAÏVE ignores spatial locality, SMART doesn’t

Max effective workload roughly correlated with the node temperature

Spatially-aware Optimization

Comparing the performance of a greedy heuristic for task
assignment: NAÏVE ignores spatial locality, SMART doesn’t

Max effective workload roughly correlated with the node temperature

Work done so far

Khuller, Li, Saha “Machine activation
problems” SODA 2010.
Shi, Srivastava “Thermal and Power aware
task scheduling” Green Computing 2010.
Deshpande, Khuller, Srivastava “A Case for
Spatially-aware Optimization in Data Centers”
manuscript.
Deshpande, Khuller, Kumar, Saha “Data
layout optimization for energy efficient query
processing” in progress.

Next Steps

Since the algorithms give good performance
on simulated data, the next step would be to
develop robust code that would go into
software for managing workload on data
centers.
Develop a better understanding of this new
class of optimization problems.

Thermal Profiles in a Data Center

Simulated thermal profiles 5 minutes apart
Processing units located at the grid points
Standard power dissipation model assumed

Large, rapidly changing temperature variations

Thermal Profiles in a Data Center

Simulated thermal profiles 5 minutes apart
Processing units located at the grid points
Standard power dissipation model assumed

Large, rapidly changing temperature variations

Preliminary Results for Data Placement

HMETIS: State-of-the-art Hypergraph Partitioning Algorithm

LMBR: A greedy algorithm that does sophisticated local moves

Significant energy savings by doing workload-driven optimization

