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Abstract— In this paper, an input/output system identification ~ nonlinearity. [19] sets up a convex QP based on the idea
technique for the Wiener-Hammerstein model and its feedback of enforcing an input/output functional relationship of the
extension is proposed. In the proposed framework, the identifi- nonlinearity. The algorithm proposed in this paper can be

cation of the nonlinearity is non-parametric. The identification . . . .
problem can be formulated as a non-convex quadratic program considered as an extension of the idea in [19]. In fact, the

(QP). A convex semidefinite programming (SDP) relaxation is formulation of the optimization problem in this paper also

then formulated and solved to obtain a sub-optimal solution to  centers around some sector bound property of the nonlin-
the original non-convex QP. The convex relaxation turns out to  earity. However, because of the more complicated Wiener-
be tight in most cases. Combined with the use of local search, ammerstein structure, the resultant optimization problem is

high quality solutions to the Wiener-Hammerstein identification . ived. In fact. it i P N thel
can frequently be found. As an application example, randomly MOre involved. In fact, it is a non-convex QP. Nevertheless,

generated Wiener-Hammerstein models are identified! with the proposed SDP relaxation, it will be demonstrated
that the non-convex QP formulated in this paper is not
|. INTRODUCTION necessarily hard to solve.

Classical treatments of the Wiener-Hammerstein systep Feedback Wiener-Hammerstein system
identification problem can be found, for example, in [1],

[2], [3]. Many more recent treatments of the problem can In this' paper, t.he unknown ;ystem in the input/output
be found, for example, in [4], [5], [6]. In those references,SyStem identification problem is assumed to be from a
pecific class — either of the Wiener-Hammerstein form, or

however, the identification of the nonlinearity is parametrié : o L

(i.e. the nonlinearity is assumed to be of some form suctlll1e Wiener-Hammerstein with feedback in Figure 1.
as piecewise linear or polynomial functions). Therefore,
those previous results can be restrictive in application. Non- - - - - _ - _ _ -~ _ _ _ _ _ _ _ __ |
parametric identification of block oriented models, on the | \
other hand, are more flexible in terms of modeling power. u:» G* —» 0 (H*)
Reference [7] proposed an algorithm for the non-parametric | -
identification of the Wiener system under the assumption that |

|
|
|
the input is Gaussian noise. The authors of [8], assuming that ' K* :
|

the LTI block is known, reduced the identification problem of :

the Wiener system to a least squares problem. [9] proposed ~ -~~~ -~~~ -~~~ -~~~ "~~~

an unbiased identification algorithm based on maximumig. 1. The Wiener-Hammerstein system with feedbagk.denotes the
likelihood estimation. unknown systemK = 0 corresponds to the Wiener-Hammerstein system

In a sense, the idea of the system identification schenjg tg%ﬁfﬁgggf*k' The output measuremgris assumed to be corrupted

proposed in this paper has been explored under the banner

of model validation [10], [11], [12], [13], [14], [15], [16].

In this problem, a model with a given block diagram is to The following assumptions are made in Figure 1.

be invalidated by proving that it is inconsistent with some 1) The signalsu, y, ¥ andn* are causal and of finite
input/output measurement obtained from experiment. The in-  length N.

validation is typically performed through the finding of some 2) G*, H* andK* are assumed to be single-input-single-
infeasibility certificate of some constraint set. Conversely, the output (SISO) FIR systems. In additiof/* and K*

finding of a feasibility certificate will prove the consistency are assumed to be positive-real passive. That is,
of a model with the given input/output measurement data. Re{H* (ejw>}

; ; ! ) >0, Vwel0,2m)
This forms the basis of the block diagram oriented system Re{K* (ejw)} >0, Vwel0,2m) 1)

identification schemes such as [17], [18], [19]. In particular,
[19] proposed a very general approach for the identification 3) Nonlinearity ¢* is assumed to be scalar valued and
of the Wiener system assuming only the monotonicity of the =~ memoryless, and it is assumed to satisfy a certain
sector bound criterion in incremental sense. That is,
1The first author is now affiliated with the Department of Automatic there exists a scaldl < 3 < oo such that for all
Control, Lund Institute of Technology, Sweden. The rest of the authors a,be R,

are affiliated with the Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology. The research work was
completed before the first author's transition from MIT to Lund. (¢* (b) - ¢* (a)) (¢*(b) - qS*(a) - 6b+ﬂa) <0. (2)



Condition (2) means that the nonlinearity is mono- enforced. However, it turns out to be inconsistent with the
tonically non-decreasing and its derivative has an uppeolution technique proposed. Therefore, in all subsequent
bound. Further details can be found in [20]. sections the stability requirement will not be dealt with
explicitly. In Subsection 1lI-C this issue will be revisited,
and a post-processing algorithm will be given to enforce the
The rest of the paper is organized as follows: in Theassivity of H (and hence the stable of the final model).
main ideas of the problem formulation and solution pro- System identification problem formulation — a feasi-
cedure will be explained in Section Il and Section llipility problem. Consider the Wiener-Hammerstein model in
respectively, through a special setup in which there is npjgure 2 in which the output and the input are constrained
output measurement noise or feedback. Then in Sectigd be the given datdu,y). Let's investigate the possible
IV the identification setup with output measurement noisghoices of the decision variablgsandh so that there exist
is considered. Differences in the analysis and algorithgignalsv € RN andw e RY with the property thatu, v),
due to the noise will be highlighted. After that, the full (v,w), (y,w) are valid input/output pairs of the blocks,
feedback Wiener-Hammerstein system identification problegy and H respectively.
will be considered in Section V. Application examples will

be presented in Section VI. u v W p y
—» G —» ¢ —¥» H —»

B. Organization of the paper

Il. IDENTIFICATION OF THEWIENER-HAMMERSTEIN

SYSTEM — NO MEASUREMENTNOISE
. . . . . Fig. 2. A feasibility problem to determine the impulse responses of the
The first pmblem to be considered in this paper 1s thﬁIR systemsG and H. Hereu and y are the given input and output

identification of the Wiener-Hammerstein system without theneasurements generated by the true (but unknown) system. The signals
feedback or the output measurement noise. The identificatigrpndw are the outputs ofr and H, respectivelyv andw are chosen so

. . ... that they define a function satisfying sector bound constraint eq. (6).
problem will be formulated as two equivalent optimization
problems in Subsections II-A and II-C respectively. The
solution technique for the optimization problems will be The pairs(u,v) and (y, w) satisfy the following convo-

described in Section III. lution relationship.

v = Ug,

A. System identification problem formulation w = Yh, (4)

Problem data. The problem data is the input signaknd
the output measurement signalbf the true (but unknown) -~
systemS* in Figure 1. For ease of exposition, a signal will u[0] 0 0
also be denoted.as the vector of its non-zero values (e.g. u[1] ul0] :
vectoru for the signalv). _

System identification model and decision variabledt is U= K 0
natural to choose a model with the same structure as the true : : u[0]
but unknown system (i.e. the Wiener-Hammerstein structure
in Figure 2). In Figure 2 thez and H are FIR systems, :
and ¢ is a scalar memoryless nonlinearity (i.e. a nonlinear [u[N —1] u[N—-2] ... u[N—Ngy] NN,
function). Obviously, the model is specified whéh) H and “(5)
¢ are specified. andY is defined in a fashion analogous to eq. (5).

FIR systemsG and H in Figure 2 are characterized by For the pair (v,w), in principle, the only constraint
their impulse responses of lengffi, and IV, respectively. imposed is that there exists some functignsuch that

whereU € R¥N*Ns andY € RN*Ne gre defined as

That is, ) w; =¢(v;), Vi=0,1,...,N — 1. However, to maximally
g = [go g1 .- gNg_ﬂ , 3) reduce the redundancy of the possible choiceévofv), an
h:= [ho hy ... hNh_l]'. additional constraint is enforced: should satisfy the sector

The identification of the nonlinearity is non-parametric. bound of the form of eq. (2). That is,

That is, ¢ is specified only by some samples of its in- (¢(b) — ¢(a)) (¢(b) — ¢(a) — b+ fa) <0, Va,be R.

put/output pair. The values af other than those given by (6)

the samples can be obtained using an interpolation schef@enstraint eq. (6) imposed on the functign: R — R is

(e.g. linear interpolation). In addition, the samples will beequivalent to a constraint on the generating gairw) as

restricted to those computable by the FIR impulse respgnse L.

andh. Thereforeg andh are the decision variables sufficient (Wi = wj) (Wi = w; = fvi+ 6v;) <0, Vi>j. (7)

to specify¢ as well as the full model in Figure 2. The equivalence of eq. (6) and eq. (7) is shown in [20].
Treatment of the passivity constraint. A sufficient con- In summary, the Wiener-Hammerstein system identifica-

dition for the stability of the identified model is that thetion problem in the noiseless case can be defined as

FIR systemH in Figure 2 is positive real passive (see [21], Definition 2.1: [Wiener-Hammerstein system identifi-

Chapter 3). Ideally the positive real constraint should beation problem — noiseless case]



Given the input/output measuremefit,y) € RY x RV « With the normalization, the constagtin sector bound
of an unknown Wiener-Hammerstein system and positive (7) can always be assumed to be one, otherwise it can

integers N, and Ny, find decision vectorg € RYs and be absorbed in the part of the decision vector which
h € R such that there exist signalse RY andw € RY is not normalized. Therefore, throughout this paper, all
satisfying eq. (4), eq. (71 sector bound constraints assume valueg ef 1.

Typically there are infinitely many solutions of the prob- ) L
lem in Definition 2.1, the corresponding normalization issué- Formulation of the system ID optimization problem
will be discussed in Subsection II-B. In this subsection the system identification problem de-
Comparison with the model validation techniquesThe fined in Definition 2.1 will be simplified and put in a format
principles of the identification problem in Definition 2.1 andthat would facilitate the study of its solution strategy. Some
that of the problem of model validation (e.g. [10]) are venyproperties of the optimization problem will also be discussed
similar. Both problems call for satisfiability certificate ofin Subsection II-D.
the input/output relationships of the blocks in the model Definition 2.1 defines a system identification feasibility
structures. Definition 2.1 seeks a feasibility certificate whilgroblem with three constraints given in eq. (4) and eq. (7).
model validation seeks an infeasibility certificate. HoweverThe discussion in Subsection 1I-B concludes that a partial
there are two major distinctions between the proposeabrmalization ofh (i.e. eq. (8)) can be assumed. In addition,
identification setup and the model validation setup. Firstyith the partial normalization in eq. (7) can be assumed
for the model validation problem, proving thexistence to be one. Substituting the variablesandw using eq. (4),
of the infeasibility certificate is sufficient. For example, inthe constraint set eq. (4) and eq. (7) reduces to
[10], [15] the question of whether an infeasibility certificate 9 L
exists is answered by a structured singular va?/ue bounding (AY;jh)” — (AY;;h) (AU;8) <0, Vi>j, (9)
problem. The Wiener-Hammerstein identification problem ifyhere
Definition 2.1, on the other hand, requires the computation AU;; :=1U; - Uy, (10)
of all signals presented in the model. This computation AY;; =Y,; - Y},
can potentially be expensive. The second distinction of;,q
the proposed identification setup from the model validation I N . ,
setup is that the feasibility problem in Definition 2.1 will Ui € Rl o U= UG - UGN, |,
lead to anon-convexguadratic program, while most of the Yie R Y= [ Y (1) - YN |,
previously considered model validation setups lead to thgith U andY defined in eq. (5).
formulation of convex problems. The convexity properties Conforming to the standard notation in the field of op-
of the optimization problems also lead to a distinction in th&imization, define the vector of decision variables €
solution approaches. The published model validation resuftsNs+~Nr gs
are mostly based on rigorous analysis, while the approach - { g ] (11)
adopted in this paper will be more experimental — some h |7

observations will be substantiated by numerical experimenien corresponding to eq. (8), the partial normalization

only. constraint set will be denoted as
B. Non-uniqueness of solutions and normalization g
N . . X:={z= e RNotNu | hy=1¢.  (12)
The system identification problem in Definition 2.1 is h

feasible with decision vectorg* and h* (i.e. the impulse . i ) (Nt N2 ) % (Ny N3
responses of the FIR systems in Figure 1). However, there are!l 2ddition, define matrices;; € RiTan/ "% 0) as

actually infinitely many solutions. It can be verified that for (AY ;) (AY ;) —1(AYy) (AUy)
an infinite set of choices af; # 1 andcy # 1, the impulse ij = [ —1(auy) (AYy) 0

responseg = g*/c; andh = h* /¢, are also solutions of the 13)
problem in Definition 2.1. The non-uniqueness of solutionFhen eq. (9) is the same as

requires the normalization of and h, and the details of , o

the normalization can be found in [20]. Here only the main v Ajjr <0, VYN —-12>i>j>0. (14

observations are summarized. Using the notationA;; defined in eq. (13), the system

« Normalization of bothg and h will generally lead to jdentification optimization problem can be formulated as
excessive restriction. Therefore, oliywill be normal-  fg||ows.

ized in this paper. The particular choice of normalization minimize
will be assumed: z€ X,reR "
hy = 1. (8) subjectto 2/A;jx <r, Vi>j (15)

While the choice of normalization in eq. (8) is r20,

somewhat arbitrary, it is not unjustified becausavheret is definedin eq. (12) and;; are defined in eq. (13).
ho = [ Re {H (ejw)}dw > 0. Program (1_5) and the f§a5|b|l|ty p.(oblem in Definition 2.1 are
0 equivalent in the following sensg:is an optimal of program



(15) if and only if the corresponding andh (see eq. (11))

is a feasible solution of the problem in Definition 2.1. The
equivalence can be explained in the following schematics
(with # andg andh related by eq. (11)).

g and h is a solution according to Definition 2.1
<= g and h satisfies eq. (9)
<= 7 satisfies eq. (14)
<= 2z is an optimal solution of program (15)

\tilde{R}(s)

(16)
All but the last equivalence have already been discussed. The
last equivalence is true only in the noiseless identification
case — the normalized FIR system coefficiegitsandh* is
an optimal solution of program (15) with an optimal objec-
tive value of zero, hence any optimal solution of program

(15) satisfies eq. (14). Fig. 3. Plot of R (s) in 200 (normalized) randomly generated directions.
Note thatR (s) is not a convex function, but it is almost convex.

D. Properties of the system ID optimization problem

The matricesA;; in (13) can be written as
IIl. SOLVING THE OPTIMIZATION PROBLEM

Aij = pij (i) = @i (915)", Subsection 1I-C concludes with the formulation of pro-
gram (15), which is &P hard non-convex QP. The solution
where procedure for solving optimization problem (15) can be
(AY;) 0 divided into three steps, which will be discussed in detail
Pij = { ~1(AUy) } and  gi; = { —Lauy,) ] in three subsections.

17

From (17), it can be seen that;; are rank two matrices o
with one positive and one negative eigenvalues. Therefore, SPP relaxation is a standard attempt to solve non-convex
program (15) is a non-convex QP, whichA&P hard. QP’S (_e._g. [22]). To understand the rela_xatlt_)n, it is noted that

On the other hand, it can be seen that the absolute vallfe@Ptimization problem (15) the following is true
of the positive eigenvalue is (much) greater than that of the @' Az = Tr (A;X), X =X' >0, rank(X) = 1.
negative eigenvalue. This fact suggests that program (15) (20)
might be an “easy’AP hard problem. This hypothesis A standard procedure to obtain a SDP relaxation is to drop
is indeed justified by the following numerical experimentihe rank constraint in (20), which leads to
Define a proximity function? : RNs+ e s R as

A. Semidefinite programming relaxation

)r(nir}(imiz% r

€ &s,re

R(x) := yomax {0,2 Az} . (18) subjectto Tr(4;;X)<r, Vi>j (21)
r>0

Then letd € RNs+Nn be such thatl (7) is a zero mean unit X=X >0,

variance Gaussian random variable for alland letz* be
the vector corresponding g andh*. Then normalizel to
d such thatz* + sd € X for all s € R and||d|| = 1.
Consider one dimensional functidl : R — R, such that

where X is the normalization constraint set f&f corre-
sponding toX for z. Once the relaxation (21) is solved, the
singular vector corresponding to the largest singular value of
the matrix solution is returned as the best suboptimal solution

R(s) = R(z" + sd). Plot this function fpr arange ef(e.g. to (15). Itis obvious that the lower the rank &fis, the better
s € [-0.1,0.1]). Repeat the process with another randomI)(he quality of the suboptimal solution will be.

gene_rategd for many times and check the shape of the For the noiseless setup in this section, the minimum value
function R (for different d) arounds = 0. The outcome of of r is actually zero, attainable by, for example: :—

the numerical experiment is shown in Figure 3. Such figurlf “y (h*)’]/ Hencé the matrix so,lutiod(* _ m*x’*,.is
suggestg that program (15) is almost convex, SUbSt"’mt'at'aggoptimal solution to relaxation (21). Then by setting the
the previous notion that program (15) should not be a tO|91inimum value ofr to be zero and instead minimizing the

dlﬁlzlgul'[llprohblefrr:lto _solve. fth ity £ . trace of X (to obtain a low rank matrix solution, e.g. [23]),
inally, the following property of the proximity functioR the relaxation of (21) is reformulated as

defined in eq. (18) will be assumed but not formally proved.
mi)pin;n(ize Tr (X)
~ . ~ ~ €Xs
dJK e Ry :Vze X, 3t e ar~g€n)1(1nR(:v) e — 2l < KR(z), Subject to T (A;;X) < 0 (22)
(19) X=X">0



The tightness of the relaxation depends upon the nonlin- The treatment of the line search in this paper is standard,
earity in Figure 2, but not too much on the FIR systefhs see [24] for details.
and H. The above observation is made through the following
numerical experiment: 300 instances of program (22) wefe. Final optimizations

solved. The input/output data was produced by driving The main reason for the final optimization is the positive

300 randomly generated Wiener-Hammerstein systems witha| passivity enforcement of the final model lof Recall
the block diagram in Figure 2 and H were randomly the definition of positive real passivity

generated, but the nonlinearity were fixed. For the first _

one hundred cases, was a hyperbolic tangent (i.e(v) = Re{H (¢/*)} =ho+ ...+ hy,_1cos (Ny —1)w) > 0.
tanh (v)). For the next one hundred casesyas a saturated (25)
linearity (i.e. #(v) = sgn (v) max {| |, 1}). For the last one It can be verified (see [25], for example) that eq. (25) is true
hundred cases; was a cubic nonlinearity (i.e(v) = v3). It  if and only if there exists) = @’ € R(V»=Dx(Nn=1) sych
is clear that the cubic nonlinearity does not have a derivatiiéat .

bound, whereas the former two nonlinearities do have such { Q 3h ] _ { 0 0 ] >0 (26)
a bound. The results of the tests are shown in Table I. It can h'  ho 0 @ ’

be seen that for nonlinearities with strong saturation (i'%vhere

derivative bounds) the SDP relaxation is much tighter.

!
h:=[ hy,-1 hn,—2 - hi ] € RN!
TABLE | [ hwimr B2 1] :

STATISTICS OF THE RATIO(%) BETWEEN THE SECOND AND THE FIRST  and inequality (26) means that the left side is a positive
LARGEST SINGULAR VALUES OF THE SOLUTION MATRICES FOR THE definite matrix. Note that (26) is a linear matrix inequa”ty
TEST CASES WITH THREE DIFFERENT PRESPECIFIED NONLINEARITIES with variablesQ, ho and h.

Now supposeﬁ is the identified FIR system impulse re-

hyperbolic tangent| saturated linearity| cubic o .
mean (%) 0.1860 5842 x 10-10 | 1526 sponse coefficients by the relaxation/local search procedure.
std (%) 0.3223 2.844 x 10—9 | 3.501 Then the passive refinement hfcan be found by solving

_ _ _ minimize Hh - hH
While the relaxation (22) provides a reasonably good ap- h 2 (27)

proximation to the true optimal solution of the original non- subject to (26).
convex problem (15), the approximation should always be |y, |peNnTIFICATION OF WIENER-HAMMERSTEIN
refined by some inexpensive procedure such as a linearized SYSTEM —WITH MEASUREMENTNOISE

local search described in the next subsection. ) ) )
The development of this section will be parallel to the

B. Local search combination of Section Il and Section lll. Differences be-

A local search is the following optimization procedure:tween the noiseless and the noisy cases will be highlighted.
given an initial guessy € RNsTNr, generate a sequence ] o )
{z1,22,...,2,} using the formula A. System identification problem formulation

The model to be identified is still of the Wiener-
Hammerstein structure in Figure 2 with decision variatges
whereAz;, € RNs+ Ve js the search direction ang, € Ris  andh and¢ being specified by a lookup table. Because of the
the step length defined to minimize some objective functiomutput measurement noise, however, the system identification
Given the current iterate,,, a search directiol\z;, should feasibility problem will be different. It is shown in Figure 4.
also be admissible. That is,

Az € Xa () = {y € RNﬁNh"xk.—i—sye X, Vs ER}

Tl = T + SpAzk, k=0,1,...,m—1

" G o [ H Y

Then this paper seeks to filz;, € XA (z) such that

max{0, (zy, + Azy) Ay (z + Azg)} — min.  (23) n
1>7
Problem (23), however, is as difficult as (15). Neverthelessig. 4. A feasibility problem to determine the impulse responses of the FIR
if the term (Axk,)/ Aiijk is ignored, then it leads to systemg and H. Hereu andy are the given input and output measurement
generated by the true (but unknown) system. The signadsdw are the
minimize r outputs of G and H, respectively. The signah is the noise corrupting
Azy,reR the output measurement. In the feasibility problem,w andn are extra
subject to zj A;jzr + 22, Aij Az <1, Vi>j (24) variables chosen so that, together wighand h, they define a functior
r>0 satisfying sector bound constraint eq. (6).

Az € Xa (xk) .

Optimization problem (24) is a linear program (LP) withThere is an extra signat € RY to be determined in the
respect to decision variablesand Az;,. feasibility problem in Figure 4. Define the Toeplitz matrix



N € RV*Ne : similar to U in eq. (5). Then the constraint in Section Il should be modified. This will be explained in

set defined in Figure 4 can be given as follows. Subsection IV-C.
A question of great concern is how good the relaxed
v="Ug, (28a) optimization problem (32) is. The following statement, from
w = (Y —N)h, (28b) [20], gives a theoretical solution guideline.
(Wi —wj)(w; —w; —v;+v;) <0, Vi>j (28¢) Lemma 4.2:Denoten* as the vector of output measure-

] ] ] o ment noise. Leg andh be a solution of program (32) when
Then the Wiener-Hammerstein system identification problegpe matrices4,; are defined with input/output measurement

with o_u'gput measur_ement noise can _be defined as  (u,y)with noisen*. Letg* andh* be a solution of program
Deflnltlon 4.1: [ngner—Hammerstem system identifi- (15) when the matrices!;; are defined with input/output
cation problem — noisy case] measurementu, y) without noisen*. Then if the proximity

Given the input/output measuremefi,y) < RY x RV _function property in eq. (19) (wheni;; are defined with
of an unknown Wiener-Hammerstein system and positivgoise) is satisfied, then fdm* || small enough,

integers N, and Ny, find decision vectorg € RMs and R
h € RM» such that there exist signalsc RY, w ¢ RV H(g,h) —(g*,h")
andn € R satisfying eq. (28a, 28b, 28dA

=00l @)

C. Reformulation of SDP relaxation

B. Formulation of the system ID optimization problem The relaxation of the feasibility problem in Definition 4.1

Parallel to the development in Subsection I1I-C, the feasleads to the optimization problem (32), which has exactly
bility problem in Definition 4.1 will be simplified. However, the same form as program (15) with only one exception —
instead of formulating and solving an equivalent optimizatiothe minimum of program (32) is not necessarily zero in the
problem as it was in Subsection II-C,ralaxationwill be  presence of output measurement noise. Therefore, all of the
formulated due to computation considerations. solution steps described in Section Il apply to the noisy

Substituting eq. (28a) and eq. (28b) into eq. (28c) yieldproblem (32) with the exception that the feasibility problem

2 (22) is infeasible, and hence it cannot be part of the solution
(AY;;h)” — (AY,;h) (AUy;g) ) ~ procedure. The following SDP will be solved in place of
S (ANljh) (QAY”h - AUZJg) - (AN”h) 5 VZ,j, program (22)

(29)
where )rpir}(imizg Tr (X) + Ar
c€ds,re
ANy = N; - N; (30) Subject to Tr (4, X) <r (34)
and X=X">0
r>0
N; € RN Nyi=[ N(i,1) -+ N(,N,) |.

In program (34)X; is defined in (22), andd;; are defined
Constraint (29) is difficult to handle because of the terms im eqd. (13).A > 0 is a tuning parameter. It turns out that
the right-hand side with the extra variablesofTherefore, it A = 100 works pretty well in general.

is proposed in this paper that the followirgjaxedconstraint

should be imposed instead. That is, V. IDENTIFICATION OF WIENER-HAMMERSTEIN SYSTEM

—WITH FEEDBACK AND NOISE

2 . .
(AY;;h)” — (AY ;h) (AU g) <rij, Vi>j, (31) The setup of the identification feasibility problem is given

- " - : N,
with variablesg, h and r ¢ wa_lm. Constraint eq. in Figure 5. In addition to the decision variablgse R

(31) is linear with respect tar, and therefore it is no

more difficult to handle than eq. (9) in Subsection II-C. Yl G v 0 Wl oy »O-—Y
Based on the “robustness principle” that eq. (29) should be -
satisfied by a noise vecter (and alsor) with the minimum

norm (e.g. the infinity norm). Then, using the notations K*H
defined in eq. (11)X defined in eq. (12) andi;; in eq.
(13) in Subsection II-C. The relaxed system identificatio

N
»

rI]—'ig. 5. A feasibility problem to determine the impulse response& of

optimization problems can be given as H and K = H. Hereu andy are the given input and output measurement
L generated by the true (but unknown) system. The signadsdw are the
Enémn?ézﬂg r input and output of the nonlinearigy. The signah is the noise corrupting

h P A . . 32 the output measurement. In the feasibility problemw andn are extra
subject to z'Ajjz <r, Vi>j (32) variables chosen so that, together wgthh andk+h, they define a function
r > 0. ¢ satisfying sector bound constraint eq. (6).

Note that program (32) has exactly the same form as program

(15), the noiseless case in Subsection II-C. However, iand h € RY» seen in the previous sections, there are
general, the minimum objective value of program (32) willdecision variables associated with the FIR syst€mwhich
not be zero. Accordingly, the solution procedure describeid implicitly characterized by the impulse response of the



product of K and H denoted ask * h ¢ RV+**+¥»—1 and

the impulse response df denoted ah € R». Once the e
vectorsk x h andh have been determined, a deconvolution of ﬁ i% j§ ;% %ﬁ
can be applied to retrieve the impulse responsé of % T H *ﬁi g% in il
- . . 4 w11 TR 1 o
The feasibility problem setup in Figure 5 leads to the . FUN tr *1*1 ++ It
following set of constraints. t JEVR Ij@% I %3‘%; jH I%f*
PR EANNE N YRR RIS A
v=Ug—-Y (kxh), (35a) gogii‘f t Igi%i T *%%*%I
w=(Y-N)h, @so) = Bl Tar qrt D tARLD Qs
epe | * | *TE
(Wi —wj) (W, —w; —v; +v;) <0, Vi>j (35¢) 11‘[ ﬁﬁ% jijf %%Jf }1% #I J’jﬁ
b U ol L + 1
with U, Y and N defined in eq. (5) or in some similar 1l %i Iny 3}; f{ f;j;* ¥
fashions. Note that if the following notations are defined -6 % ﬁf 4 % g
¥
U .= [ U -Y } and §:= |: kfh :| , (36) P s w0 10 200 zéo 300 30 400 450 500
then the constraint set eq. (35a,35b,35c) can be written a'Is:ig. 6. Matching of output signals by the original (unknown) system and
_ I"j~ 37a the identified modely[k] denotes the output by the original system (star).
v=1us, ( ) yi[k] denotes the output by the identified model (line). The plots of two
w= (Y —N)h, (37b)  output signals almost overlap.
(w; —w;)(w; —w; —v;+v;) <0, Vi>j (37c)
As far as the proposed system identification algorithm is 6 ‘ ‘ ‘ ‘ ‘
concerned, constraint set eq. (37a,37b,37c) has the same form e
and properties as eq. (28a,28b,28c) in the no feedback case. a o
Therefore, the analysis and algorithm in Section IV can be % original
applied to the feedback Wiener-Hammerstein system identi- 2r identified
fication simply by replacing constraint set eq. (28a,28b,28c)
with eq. (37a,37b,37c). Once the optimal values of the deci- % ©
sion vectorg, h andkxh have been found, a deconvolution
can be applied to obtain the value lof 2r
VI. APPLICATION EXAMPLES -4t ¥
A. Identification of randomly generated Wiener- —
Hammerstein system with feedback B a0 s 0 5 10 15

The example given here is the identification of the feed-
back setup. In this test cas@;, H* and K* are randomly Frig. 7. Matching of the original nonlinearity (star) and the identified
generated positive real passive FIR filters of 4th order. Theenlinearity (line).
nonlinearity is ¢* = sgn(z){4|z],0.1jz |+ (4 —0.1)}.
The noise is such that[t] is uniformly distributed and

n[t] € [~0.01,0.01] for all ¢. of the nonlinearity is non-parametric. The paper formu-

For the |derr11t|f|cat|qn, 86 samplez @?[ﬂ’y,[]f_b were usedl lates the system identification problem as a non-convex
tho COES””C“ e matriced ar,‘dY,' The |dent(|j|c§t|onénodef QP. Nevertheless, it is demonstrated that the classical SDP
as t_ e same structure as in F'gl_”e 5_’ and t € orders o 1it}:e{’axation is able to provide very good suboptimal solution
FIR filters are also four. Once the identification is completed, iha formulated non-convex QP. Using a local search
the original te;t system and the |dent|f|ed. modell are drlVel'?'igh quality solutions of identification problem can often be
by some test signals (different from the training signals), andy \nq - Finally, a numerical example is given to show that
the corresponding outputs are recorded. Figure 6 shows tm?e proposed relaxation framework provides an interesting

matching of the output of one .Of th?. test sce_nario_s. Figurﬁew way to solve the identification problem of the Wiener-
7 shows the matching of the identified nonlinearity. Thehammerstein system with feedback

identification took about 5 seconds on a PC with a 3GHz

CPU and 3GB of RAM. REFERENCES
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