Abstract Storage:

Moving file format-specific
abstractions Into peta-byte
filesystems

Joe Buck, Noah Watkins, Carlos Maltzahn, Scott Brandt

SRL Research Symposium - October 21st, 2009

Introduction

+ Current HPC separates computation and storage
+ Focused on computation, not I/O
+ Applications require I/O independence

+ Many new scientific applications are data intensive

+ Data movement Is becoming a bottleneck

HPC Architecture

(diagram courtesy of Rob Ross, Argonne National Laboratory)

BG/P Tree Ethernet InfiniBand Serial ATA
6.8 Gbit/sec 10 Gbit/sec |6 Gbit/sec 3.0 Gbit/sec

- HW bottleneck is

E E E here. Controllers
H - H can manage only
E E E 4.6 Gbytelsec.
E E E Peak IIF} system
H . 1 bandwidth is
B E g 78.2 Gbyte/sec.
| | |
Gateway nodes Commodity Storage nodes Enterprise storage
run parallel file system network primarily run parallel file system controllers and large racks
client software and carries storage traffic. software and manage of disks are connected via
forward I/O operations incoming FS traffic InfiniBand or Fibre
from HPC clients. from gateway nodes. Channel.
640 Quad core PowerPC 900+ port 10 Gigabit 136 two dual core | 7 DataDirect $2A9900
450 nodes with 2 Gbytes Ethernet Myricom Opteron servers with controller pairs with 480
of RAM each switch complex 8 Gbytes of RAM each | Tbyte drives and 8
InfiniBand ports per pair

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Future Bottlenecks

Higher number of smaller storage nodes
Compute/Storage boundary becomes the bottleneck

Our Solution:
Move functions closer to the data

Our Solution

oo

o

o

o

Use spare cycles on storage nodes
Provide more abstract storage interfaces
Maintain data’s structure in the storage system

Small selection of structures & abstractions

Why now?

o

o

o

o

oo

Intelligent nodes in parallel filesystems

Performance management and virtualization advances
Data movement dominating cost in exa-scale
Standardization of scientific format

Recent successes of structured data

Abstract Storage

+ Treat storage like abstract data types in code
+ Only a few ADTs are necessary
+ Dictionary, Hypercube, Queue

+ Optimize each structure/interface for parallel architecture
+ Data placement
+ Performance

+ Coherence

ADTs and Scientific Data

+ Most scientific data iIs multi-dimensional and well-formatted

+ Mapping multiple structures onto a single data-set is a natural fit

+ Different write/read patterns

Implementation Challenges

+ Programming model for implementing ADTs
+ EXisting systems built on byte-streams
+ Current storage APl (POSIX)
+ Current filesystem subsystems
+ Buffer cache, striping strategies, storage node interfaces
+ Need awareness of data structure at all levels

+ New Interfaces at each layer

Prototype: Ceph Doodle

+ Focus: programming models, ADT Iinterfaces

+ Built a framework for implementing and testing:
+ Storage abstractions
+ ADT Implementations
+ Programming models

+ Loosely modeled after Ceph

Ceph Doodle Features

+ Rapid prototyping
+ Uses RPC mechanisms
+ Python
+ Support plugins for different types
+ Bytestream (implemented as storage objects)

+ Dictionary (implemented as a skiplist)

Skiplist Implementation

Splitting skip lists across nodes

Ceph Doodle Exposed

Client Application Clients use application-specific interfaces
Data Type /

Data types are cross-cutting system modules
Striping
&

Caching
Strategy Striping and caching are optimized per data

e
Client typ

05D

S5s8s

Roadmap

o

<

<

<

<

Building on top of Ceph

Redesigning sub-systems

+ Cache, striping strategies, pre-fetching
Designing new interfaces to storage
Performance increases

Adding views, gueries, provenance

Current Status

+ Collaborating with database group

+ Focusing on consuming structured data and providing
+ query support
+ mapping and indexing
+ provenance

« PDSW 2009

Thank you

Contact: Joe Buck
Email: buck@soe.ucsc.edu

UCSC Syste

mailto:buck@soe.ucsc.edu

