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Introduction

+ Current HPC separates computation and storage
+ Focused on computation, not I/O
+ Applications require I/O independence

+ Many new scientific applications are data intensive

+ Data movement Is becoming a bottleneck



HPC Architecture

(diagram courtesy of Rob Ross, Argonne National Laboratory)
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Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.



Future Bottlenecks

Higher number of smaller storage nodes
Compute/Storage boundary becomes the bottleneck



Our Solution:
Move functions closer to the data




Our Solution
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Use spare cycles on storage nodes
Provide more abstract storage interfaces
Maintain data’s structure in the storage system

Small selection of structures & abstractions



Why now?
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Intelligent nodes in parallel filesystems

Performance management and virtualization advances
Data movement dominating cost in exa-scale
Standardization of scientific format

Recent successes of structured data



Abstract Storage

+ Treat storage like abstract data types in code
+ Only a few ADTs are necessary
+ Dictionary, Hypercube, Queue

+ Optimize each structure/interface for parallel architecture
+ Data placement
+ Performance

+ Coherence



ADTs and Scientific Data

+ Most scientific data iIs multi-dimensional and well-formatted

+ Mapping multiple structures onto a single data-set is a natural fit

+ Different write/read patterns



Implementation Challenges

+ Programming model for implementing ADTs
+ EXisting systems built on byte-streams
+ Current storage APl (POSIX)
+ Current filesystem subsystems
+ Buffer cache, striping strategies, storage node interfaces
+ Need awareness of data structure at all levels

+ New Interfaces at each layer



Prototype: Ceph Doodle

+ Focus: programming models, ADT Iinterfaces

+ Built a framework for implementing and testing:
+ Storage abstractions
+ ADT Implementations
+ Programming models

+ Loosely modeled after Ceph



Ceph Doodle Features

+ Rapid prototyping
+ Uses RPC mechanisms
+ Python
+ Support plugins for different types
+ Bytestream (implemented as storage objects)

+ Dictionary (implemented as a skiplist)



Skiplist Implementation

Splitting skip lists across nodes




Ceph Doodle Exposed

Client Application Clients use application-specific interfaces
Data Type /

Data types are cross-cutting system modules
Striping
&

Caching
Strategy Striping and caching are optimized per data

e
Client typ

05D

S5s8s



Roadmap
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Building on top of Ceph

Redesigning sub-systems

+ Cache, striping strategies, pre-fetching
Designing new interfaces to storage
Performance increases

Adding views, gueries, provenance



Current Status

+ Collaborating with database group

+ Focusing on consuming structured data and providing
+ query support
+ mapping and indexing
+ provenance
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