
SRL Research Symposium - October 21st, 2009

Abstract Storage:

Moving file format-specific 

abstractions into peta-byte 

filesystems
Joe Buck, Noah Watkins, Carlos Maltzahn, Scott Brandt



Introduction

✤ Current HPC separates computation and storage

✤ Focused on computation, not I/O

✤ Applications require I/O independence

✤ Many new scientific applications are data intensive

✤ Data movement is becoming a bottleneck



HPC Architecture
(diagram courtesy of Rob Ross, Argonne National Laboratory)



Future Bottlenecks

Higher number of smaller storage nodes

Compute/Storage boundary becomes the bottleneck



Our Solution:

Move functions closer to the data



Our Solution

✤ Use spare cycles on storage nodes

✤ Provide more abstract storage interfaces

✤ Maintain data’s structure in the storage system

✤ Small selection of structures & abstractions



Why now?

✤ Intelligent nodes in parallel filesystems

✤ Performance management and virtualization advances

✤ Data movement dominating cost in exa-scale

✤ Standardization of scientific format

✤ Recent successes of structured data



Abstract Storage

✤ Treat storage like abstract data types in code

✤ Only a few ADTs are necessary

✤ Dictionary, Hypercube, Queue

✤ Optimize each structure/interface for parallel architecture

✤ Data placement

✤ Performance

✤ Coherence



ADTs and Scientific Data

✤ Most scientific data is multi-dimensional and well-formatted

✤ Mapping multiple structures onto a single data-set is a natural fit

✤ Different write/read patterns



Implementation Challenges

✤ Programming model for implementing ADTs

✤ Existing systems built on byte-streams

✤ Current storage API (POSIX)

✤ Current filesystem subsystems

✤ Buffer cache, striping strategies, storage node interfaces

✤ Need awareness of data structure at all levels

✤ New interfaces at each layer



Prototype: Ceph Doodle

✤ Focus: programming models, ADT interfaces

✤ Built a framework for implementing and testing:

✤ Storage abstractions

✤ ADT implementations

✤ Programming models

✤ Loosely modeled after Ceph



Ceph Doodle Features

✤ Rapid prototyping

✤ Uses RPC mechanisms

✤ Python

✤ Support plugins for different types

✤ Bytestream (implemented as storage objects)

✤ Dictionary (implemented as a skiplist)



Skiplist Implementation



Ceph Doodle Exposed



Roadmap

✤ Building on top of Ceph

✤ Redesigning sub-systems

✤ Cache, striping strategies, pre-fetching

✤ Designing new interfaces to storage

✤ Performance increases

✤ Adding views, queries, provenance



Current Status

✤ Collaborating with database group

✤ Focusing on consuming structured data and providing

✤ query support

✤ mapping and indexing

✤ provenance

✤ PDSW 2009



Thank you

Contact: Joe Buck

Email: buck@soe.ucsc.edu

mailto:buck@soe.ucsc.edu

