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Motivation
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An ad hoc approach creates marginal storage systems
that cost more than necessary. A better system would
be able to guarantee each user the performance they
need from the CPUs, memory, disks, and network.

Design of datacenters

use rules of thumb

over-provision

Goals of datacenters

serve many users

process petabytes of data
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Storage Networks

A Canonical Storage Network
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This research investigates standard Gigabit Ethernet

Fat-tree with full bisection bandwidth
trunk capacity matches the sum of the outer branches
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Storage Networks

Congestion in a simple switch model
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Each transmit port
on the switch is a
collision domain
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Storage Networks

Congestion in a simple switch model

switch fabric
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One of the packets
destined for the same
switch transmit port
is delayed on the queue
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Storage Networks

Congestion in a simple switch model

switch fabric
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Delayed packets from
unrelated streams
affect each other on
the queue
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Definition of Radon

Network Resource Measurements
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Relative Forward Delay RFDi ,j = (Rj − Ri ) − (Sj − Si )
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While the clocks requires no synchronization, they should
be stable and not reset between timestamps
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Definition of Radon

Real-time Information

now deadline
laxity

release

budget

Deadline is absolute

Laxity is relative

Budget gives global information
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Definition of Radon

Rate-based Percent Budget scheduling

Flow Control Budget (in packets) mi = ei/pktS , where pktS
(s/packet) is the worst case packet service time

Congestion Control Adjust wait time between packets

Percent Budget %budget = (1−%laxity) = ei

d−t

Packet Wait Time Target wop = wmin

%budget

New Wait Time wk+1 =
min

(
wmax , max

(
wmin, wk − wk−wop

2

))
Jump to window-based Radon
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Definition of Radon

Radon Userspace Proof of Concept

Detection of Congestion and its Severity

Relative Forward Delay

Five element median filter

TCP Santa Cruz queue model

Response to Congestion

Network time reservation

Inter-packet wait time varied according to %budget
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Evaluation of Radon

Experimental Setup

Seven cluster nodes with Gigabit Ethernet

Gigabit switch capable of Jumbo Frames

Modified UDPmon network analysis tool

Compare constant rate and adaptive streams

Single max rate baseline with no congestion

Punctuated primary stream interrupted by five short streams

Fairshare six equal streams

Unfair concurrent unequal streams
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Evaluation of Radon

Queue model for a single network stream
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operating pt.

No congestion
Achieves 765 Mbps



Introduction RAD on Networks (Radon) Evaluation of Radon Conclusion

Evaluation of Radon

Queue model for a single adaptive network stream
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operating pt.

Misperceives congestion
Achieves 739 Mbps
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Evaluation of Radon

Queue model for a punctuated stream
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Median-filter detects
congestion before
packet loss, and
decreasing queue
size afterwards
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Evaluation of Radon

Queue model for a punctuated stream
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Median-filter detects
congestion before
packet loss, and
decreasing queue
size afterwards
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Evaluation of Radon

Queue model for a punctuated adaptive stream
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Adapting to
median-filter model
decreases loss
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Evaluation of Radon

Queue model for a punctuated adaptive stream
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Adapting to
median-filter model
decreases loss
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Evaluation of Radon

Effectiveness of Radon for a punctuated stream

Stream target rate %lost packets recv rate (Mbps)
ID (Mbps) constant adaptive constant adaptive
1 749 24.0 2.5 565.5 725.2
2 251 3.8 0.2 245.5 1.5
3 251 4.4 0.2 244.2 1.5
4 251 4.6 0.2 244.2 1.5
5 251 4.4 0.2 240.8 1.5
6 251 3.8 0.2 238.9 1.5

All had period of 1 s, but 2-6 consisted of 500 packets
Jump to queue graphs
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Greater goodput for primary stream
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Evaluation of Radon

Effectiveness of Radon for six fairshare streams

Stream target rate %lost packets recv rate (Mbps)
ID (Mbps) constant adaptive constant adaptive
1 166 3.00 0.81 158.40 161.84
2 166 0.39 0.35 162.57 162.71
3 166 0.10 0.04 163.08 163.02
4 166 0.06 0.08 163.16 163.06
5 166 0.08 0.06 163.06 163.14
6 166 0.04 0.06 163.13 163.02

All had period of 1 s
Jump to graphs
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Greater aggregate goodput and fairer
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Evaluation of Radon

Effectiveness of Radon for six unfair streams

Stream target rate %lost packets recv rate (Mbps)
ID (Mbps) constant adaptive constant adaptive
1 500.00 38.0 35.0 305.62 318.66
2 250.00 2.3 2.0 239.65 240.28
3 125.00 0.1 0.0 122.68 122.82
4 62.50 0.1 0.0 61.36 61.40
5 31.25 0.0 0.0 30.73 30.73
6 31.25 0.2 0.0 30.64 30.71

All had period of 1 s
Jump to graphs
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Greater goodput, but unable to deliver > 80%
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The End

Conclusion

The userspace prototype of Radon:

Detects congestion using Relative Forward Delay

Responds to congestion using RAD real-time theory

Prevents packet loss to some degree

Improves goodput

And does not require global knowledge or synchronization

Andrew Shewmaker Real-time Performance Guarantees on Storage Networks
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The End

Future Work

Implement kernel qdisc of window-based Radon

Compare to global scheduler

Evaluate using 10 Gigabit Ethernet and Infiniband

Analyze interaction with TCP

Combine with other RAD-based resource schedulers

Andrew Shewmaker Real-time Performance Guarantees on Storage Networks
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5 Appendix
Experiment 3 Graphs
Experiment 4 Graphs
Window-based Radon
Related Work
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Queue model for six fairshare streams
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Queue model for six fairshare adaptive streams
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Queue model for six unfair streams
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The X axis shows
the streams send
a different num-
ber of packets
over the same two
second interval



Queue model for six unfair adaptive streams
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Window-based Percent Budget scheduling

Flow Control Budget (in packets) mi = ei/pktS , where pktS
(s/packet) is the worst case packet service time

Congestion Control Adjust window size and offset

Percent Budget %budget = (1−%laxity) = ei

d−t

Window Target wop = (1 − %laxity) · wmax

Size Change w∆ = −|wk−wop |
2

Dispatch Offset woffset = Nobs

pktS
· rand

Where wk is the current window size and Nobs is
the depth of the bottleneck switch’s queue
modeled using observations of relative forward
delay.

Jump to rate-based Radon



Less Laxity More scheduling

Flow Control Budget (in packets) mi = ei/pktS , where pktS
(s/packet) is the worst case packet service time

Congestion Control Windows adjusted in size and dispatch
time

Percent Budget %budget = (1−%laxity) = ei

d−t

Less Laxity More Window Target

wop = min
(
mi , max

(
wmax

li,j +1

)
, 2

)
Size Change w∆ = −|wk−wop |

2

Dispatch Offset woffset = Nobs

pktS
· rand

Where wk is the current window size and Nobs is
the depth of the bottleneck switch’s queue
modeled using observations of relative forward
delay.

Jump to rate-based Radon



Related Work

Traffic shaping

FAST TCP

Probe Control Protocol

VRE-NET

Netnice
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