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Cosmology Overview

Cosmology Overview
» The Universe is expanding (1920's)
» The Universe is expanding at an accelerating pace (1998)
» Ordinary matter would mean the Universe is decelerating

» Dark energy could be the unknown driver of this acceleration

v

The hypothesized dark energy cannot be directly measured so
observations are needed to infer more about it
» Type la supernovae (type la SNe)
» Cosmic microwave background radiation (CMB) - faint
background glow detected by radio telescopes
» Assumptions of the Universe - homogeneous, isotropic, and
spatially flat...
» Baryon Acoustic Oscillation (BAQO) - standard size galaxy
clusters and considered a standard ruler
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Cosmology Overview

Type la Supernovae (SNe)

Extremely bright exploding stars that take several weeks or months
to burn out; astronomers measure their luminosity over this time
and produce a light curve
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Type la supernova are standardizable candles this means they have
almost no variation in absolute magnitude. We can use the peak
luminosity as a distance measure (Dy, or )



Cosmology Overview

e
Type la Supernovae (SNe)

» We can get a distance measure from their light curve

» We can also measure type la SNe cosmological redshift which
is (the stretching of space between two objects) to see how
fast the SNes are receding from us
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> If we measure enough type la SNes then we can relate their
redshift (z, no units) and luminosity distance (Mpc) to learn
about dark energy and other cosmological parameters



Data Relation

Non-linear Equation

> The relationship of z and p is given by the
Friedmann-Robertson-Walker model:

1 z
1 = 25+ blogio <C(+Z)/ H(s)ds)
HO 0

s —w(u) du

~1/2
H(S) = (Qm(l + 8)3 + (1 — Qm)(l + 5)36_3f0 Ttu )

» ¢ denotes the speed of light and it is assumed known
» The main function of interest is w(u)

» Two other unknown cosmological parameters have to be
estimated Hy, (Hubble's constant) and £2,,, (percent
contributed by matter)



Data Relation

Poor methods of estimating w(u)

1 z
= 25+ dlogio (u/ H(s)ds>
HO 0

s —w(u) du

—1/2
H(s) = (Qm(l +8)3 4 (1= Q) (1 + s)3e 3o 77 )

» Some have tried fitting the data directly with a parametric or
non-parametric form and then taking the derivatives to get
w(u)

» Some have tried setting different parts of the equation equal
to a new function like y(s) = [ Lf_(ifjl)ds, this still requires a
first derivative of the fit to obtain w(u)

» We looked into these types of analysis but they do not work
well because taking a derivative loses information about w(u)



Data Relation

Better methods for estimating w(u)

» Choose a parametric form for w(u) and fit the resulting
parameters in w(u)

> Let w(u) be a piecewise constant function and choose binning
methods to approximate w(u)

» Allow w(u) to be a non-parametric Gaussian process or basis
of functions

Set up the likelihood function and introduce o2 and 72 to the
equation:

L o (1)n T ()
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Data Relation

Gibbs step for o2
» Likelihood

g

L <1>n Y (12)

In our likelihood we introduce o2 and we will need a prior and
posterior for it.

» Prior:
m(0?) ~ IG(a,b)

» Posterior:

2|2, Ho, Q) G| 2+ EZ m=TEY
0|z, 110, 3ém, Wo 9 CL,2 P
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Data Relation

Gibbs step for Hy

» Transform Hj as follows: h = —5log10(Ho)
» Informative prior: w(Hg) ~ N(c,d?)
» Transform this prior to the form using the delta method:

m(#) ~ Nim, %) ~ N <_5l0910(6),d2 (cln—go)f)

ES ET S SR

V; = 25 + 5logio (c(l + zz)/ Z H(s)ds)
0
_w(u)d >_1/2

where

H(s) = (Qm(l +8)% 4 (1= Q) (1 + 5)% %o
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Data Relation

Some models for w(u)

v

Model 1: fit w(u) = a

v

Model 2: fit w(u) = a + bu

v

Model 3: fit w(u) = a + b(m - 1)

v

Model 4: Gaussian process fit of w(u)

» A basis of Hermite polynomials that approximates the
Gaussian process
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Data Relation

Simulated Data

The simulated data has 2000 points with constant Hy = 72,
Q= 0.27, 02 = 1.0, and constant 72.
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> pp: wu) =-—1
> p2: w(u) should be fit well by the parametric forms used
> s w(uw) is an extreme case that will test all the models



Parametric Models

Model 1 - Assume w(z) = a

r(z) = leo /0 (14 8)* + (1 — Q) (1 + 8)(1 + 5))

Prior: mw(a) ~ Unif(—25,1)

—-1/2

Point mass prior for hypothesis testing:
m(a) ~ AU(—25,1) + (1 — X\)dg=—1

Table: Model 1 - Hypothesis Test

Dataset % a = —1 a
I’ 0.98  (-1.000,-1.000)
112 0.00  (-0.865,-0.855)
3 0.00  (-0.912,-0.902)
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Parametric Models

Model 1 - Results

Table: Model 1 - 95% Pls

Dataset a Qo Hy
11 (-1.005,-0.994) 0.27 72
142 (-0.865,-0.855) 0.27 72
143 (-0.912,-0.902) 0.27 72
1 (-1.048,-0.957) (0.262,0.282) (71.63, 72.27)
142 (-0.884,-0.785)  (0.239,0.271) (71.77, 72.43)
143 (-1.243,-1.133) (0.343,0.359) (71.84, 72.41)




Parametric Models

Model 1 - Results
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Parametric Models

_Model2
Model 2 - Assume w(u) = a + bu

1
=

’ ~1/2
/ (Qm(l +8)% + (1 — Q) (1 + 5)3(a—b+1)€3b5) s
0

r(z)
Priors: mw(a) ~ Unif(—25,1) and 7(b) ~ Unif(—25,25)

Table: Model 2 - Hypothesis Test

Dataset % a=-1,b=0 a b
" 0.99 (-1.000,-1.000)  (0.000,0.000)
11 0.00 (-0.853,-0.817) (-0.168,-0.031)

13 0.00 (-1.072,-1.038)  (0.500,0.622)
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Parametric Models

_ Model2
Model 2 - Results

Table: Model 2 - 95% Pls

Dataset a b Q0 Hy
1 (-1.025,-0.986)  (-0.055,0.102) 0.27 72
123 (-0.854,-0.817)  (-0.165,-0.026) 0.27 72
143 (-1.072,-1.039)  (0.501,0.622) 0.27 72
11 (-1.042,-0.945)  (-0.470,0.288)  (0.226,0.306) (71.57, 72.24)
1) (-0.880,-0.790)  (-0.344,0.164) (0.214,0.301) (71.69, 72.40)
143 (-1.204,-1.057)  (0.238,0.653)  (0.267,0.335) (71.92, 72.50)
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Parametric Models

_ Model2
Model 2 - Results

8 8
‘ ‘
v .
e e
: :
g | g | g
2 2 2

< <

T T T T T T T T
00 05 10 15 00 05 10 15

z z

S S

7 7

© ©

34 34

w(z)

wz)
-10

wz)
-10

18 /44



Parametric Models

Model 3 - Assume w(u) = a + b(7 — 1)

1 z 1/2
r(z) = / (14 5)° + (1= Q)1 + 524D ) g
Hy Jo
Priors: w(a) ~ Unif(—25,1) and 7(b) ~ Unif(—25,25)
Table: Model 3 - Hypothesis Test
Dataset % a=—-1andb=0 a b
11 0.98 (1.000,1.000)  (0.000,0.000)
142 0.00 (-0.852,-0.804)  (0.044,0.305)

113 0.00 (-1.121,-1.078) (-1.159,-0.936)
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Parametric Models

Model 3 - Results

Table: Model 3 - 95% Pls

Dataset a b Q0 Hy
1 (-1.036,-0.983)  (-0.205,0.094) 0.27 72
123 (-0.852,-0.805)  (0.047,0.299) 0.27 72
143 (-1.122,-1.077) (-1.164,-0.929) 0.27 72
11 (-1.048,-0.951)  (-0.545,0.510) (0.229,0.297) (71.61, 72.34)
1) (-0.878,-0.784)  (-0.322,0.473) (0.215,0.291) (71.72, 72.45)
143 (-1.237,-1.096) (-1.368,-0.613) (0.243,0.324) (72.05, 72.65)
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Parametric Models

Model 3 - Results
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Non-parametric Models

Gaussian Process

Gaussian Process on w(u)

» A Gaussian process (GP) is a stochastic process such that
when sampled at any finite collection of points, the values
jointly follow a multivariate Normal distribution

» A Gaussian process needs a mean and correlation function

> w(u) ~ GP(0, k2K (u,u')) for u = (u1, ..., Unm,)
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Non-parametric Models

Gaussian Process

Mean and Correlation Functions
» Mean: § = —1 and other values were tried

» Correlation:
» Powered exponential covariance:
K(U,’U/) _ ef)\\ufu'\a _ p\ufu'\a
» « = 2 is the Gaussian correlation but o = 1.9999 gives a
non-singular invertible matrix
» Matern with v = 1.5 was still too smooth
» « = 1 is the exponential correlation

» Priors: m(p) ~ Beta(6,1), m(k?) ~ IG(25,9),
02 ~ IG(10,9) and the usual for Hy and Q,,
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Non-parametric Models

Gaussian Process

Altered Gaussian Process
» Usual GP:

027 Ps HQ'/M’ Ti27 Zi X L(zi> iy Ti|w<u)7 UQ)GP(w(u)lp, KQ)W(p)Tr(K‘Q)ﬂ-(UQ)

Localized proposals are desirable in this case and provide better
acceptance rates

» Altered GP:
02,y K2 ¢ Lz, i, 7ol (), p, 52, %) MV N (w”(); 0, 1) (o) (%) (o)

where ©7V2(w(u) — 0) = w’(u) ~ MV N(0,1)
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Non-parametric Models

The Not so Simple Algorithm

1
=

s w(u) du

r(z) /OZ (Qm(l +8)3 + (1 — Q)1+ 8)363f0 T+u )_1/2 ds

We use the properties of a GP to do the inner integration

(following the work of O'Hagan on Bayes-Hermite quadrature):

y(s) = g%du.

w(u) ~ GP(O, Sy = k2pl=v1%)

s s’ \u—u'|"‘
_ 2 o /
y(s) ~ GP (9 In(l+s), Y1==x /0 /0 TESTIERT) dudu)
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Non-parametric Models

The Not so Simple Algorithm continued

We draw proposals for w(u) but then use the properties of the GP
to turn these into y(s)

o] e [ B 5]

y(s)|w(u) = E(y(s)|w(u)) = 0ln(1 + s) + 21222_21 (w(u) —0)

During this step we take the opportunity to draw extra y(s) to
help smooth it and gain more precise estimates for the outer
integral - basically interpolation
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Non-parametric Models

The Not so Simple Algorithm, cont

Benefits of this method:

» 3117 is never computed, it would contain a double integral in
every entry and because of the interpolation this would be a
very large matrix

» There is not one large covariance matrix that has to be
inverted to get proposals

» The inner integral is done at the same time as the
interpolating, this also helps keep the size of the covariance
matrix that must be inverted relatively small

‘ @

I lu—s
» But Sip = k%[ £

1o du must be computed
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Non-parametric Models

Integration Methods

» Approximate: Yip = K2 fosl pl;;zl du using Chebyshev-Gauss
quadrature which uses Chebyshev polynomials of the first kind

as its orthogonal polynomials
» Change the limits of integration from [0, s'] to [—1,1]

» Approximate the integral with: f_ll \/%dx ~ Y v (),

T; = CoS (%) and v; = I and n = 100

» Resulting summation:

K(s,s) = 5 S0 i ol

(1+”l+ )

SuZ

+7—S|a

» The outer integrals were done with a basic trapezoid method
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Non-parametric Models

Gaussian Process

GP Results

Exponential correlation
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Non-parametric Models

GP Results

Table: Gaussian Process

Dataset Q. Hy,

g1 (0.250,0.200) (71.53,72.34)
gz (0.243,0.280) (71.77,72.62)
ps  (0.237,0.279) (71.81,72.68)
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Non-parametric Models

Basis of Damped Hermite Polynomials

» Higher order polynomial models do not fit w(u) well

» Karhunen-Loeve expansion of a stochastic process leads to
this parametric representation of a Gaussian process by using
orthogonal polynomials as basis functions

> E(H}(Z)H;(Z)) = 654 where Z ~ N(0,1) so the Hermite
polynomials (H*) are orthogonal in expectation

» This model is interesting because it approximates the
Gaussian process with Gaussian correlation with: A = W

and variance 0% = 72(1 — m?)~1/2



Non-parametric Models

Basis of Damped Hermite Polynomials

» The series expansion for the first two polynomials (which will
have to be scaled to our data):

W(u) =(u) + Y Bsds(u)
s=0

(1) + exp =y — By + B+ (B .
= u eXp—————< e u — U ...
Y p 2(1 + m) 0 NG 2 1 2\@
> Js(u) = Hi(u)exp (#ﬁ;) is the damped polynomial
» 7(f) ~ N(0,m*) where m is the dampening term between 0

and 1
» We will fit W(u) = % because then we can use properties

of the Gaussian distribution to do the inner integration



e
Real Data

These are four sets of currently available real data
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e
Real Data - Model 1, 2, 3

There is an M that gets incorporated into Hy from the
marginalization of the data during the light curve fitting, so Hy is
closer to 65 than 72

Table: Models 1, 2, 3 - 95% Pls

Model Dataset a b Qo Hp

Model 1 Davis (-1.334,-0.881) N/A (0.229,0.324) (64.62, 67.64)
Kowalski  (-1.241,-0.852) N/A (0.235,0.334)  (69.08, 71.47)
SALT3  (-1.156,-0.848) N/A (0.233,0.323)  (64.44, 66.10)

(

(

(
MLCS17  (-1.048,-0.756) N/A (0.226,0.320)  (64.37, 65.76)

Model 2 Davis  (-1.576,-0.678) (-0.263,1.889) (0.228,0.337) (64.60, 67.99)
Kowalski (-1.545,-0.876) (-0.549,2.175) (0.229,0.327) (69.36, 72.08)
SALT3  (-1.251,-0.622) (-2.460,1.199) (0.233,0.338) (64.24, 66.22)
MLCS17 (-1.132,-0.516) (-2.301,0.958) (0.229,0.333) (64.20, 65.77)

Model 3 Davis  (-1.699,-0.666) (-3.260,2.622) (0.232,0.328) (64.54, 68.20)
Kowalski (-1.655,-0.867) (-3.683,1.024) (0.231,0.327) (69.45, 72.28)
SALT3  (-1.286,-0.525) (-1.805,3.699) (0.232,0.336) (
MLCS17 (-1.184,-0.442) (-1.707,3.110) (0.232,0.332) (

64.16, 66.19)
64.16, 65.82)




Outline

Real Data - Models 1, 2, 3
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e
Real Data - Model 4

Table: Models 4 - 95% Pls

Model Dataset Qo Hy

Model 4  Davis  (0.232,0.325) (64.60, 67.63)
Exponential Kowalski (0.231,0.330) (69.11, 71.58)
SALT3  (0.229,0.323) (64.39, 66.15)

MLCS17 (0.226,0.324) (64.32, 65.83)

Model 4  Davis  (0.228,0.324) (64.60, 67.51)
Gaussian ~ Kowalski (0.233,0.328) (69.10, 71.52)
SALT3  (0.231,0.324) (64.47, 66.16)

MLCS17 (0.226,0.323) (64.35, 65.77)
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Outline  Cosmolo a Re arametric Models

Real Data - Model 4

Exponential and Gaussian correlation
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e
Adding More Variables

» The real data has two more variables that so far we have not
used in our analysis: k (the color of the supernovae) and ¢
(the scale of the light curve of the supernovae), where
wi=mp—M —a(t—1)— pk

0.247
Hop

» Add radiation density term Q, =

1+2) [
T(z)=M+a(t—1) +Bk+25+5log1o¥/ H(s)ds
0 0

s —w(w) g

—1/2
H(s) = (Qr(l + ) (148 + (1= Q — Q)1+ 3)36_3f0 TFu )

» We would like to fit our GP to w(u) with these additional
parameters in the model



Experimental Design

» Different telescopes are capable of probing various depths of
space

» We would like to help give target values on the z axis

» We want these values of z to either better estimate the mean
of the variables or reduce the probability bands

» We could also look at entire regions of the z axis to see how
they affect the estimation of w(u)

» This type of analysis can give information on what types of
telescopes would most benefit future work
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Baryon Acoustic Oscillation Data

» We want to add this data to better constrain the estimates of
w(u), O, and Hy

Vi, <1 /21 Hy )2/3
A= — ds
h(21)1/3 21 Jo H(s)

s —w(u -1/
e <Qm(1+5)3 + (1= Q)1+ 8)% 1+(u)d“>

where A = 0.469 (%)™ +0.017

» There is currently a point at z; = 0.35 where
ng = 0.958 +0.016

» There may be another point at z; = 0.20 but it has some

issues
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Cosmic Microwave Background Data

» The physics of this data is best understood compared to other
types of data

29 HO
R = \/Qm/ ds
o H(s)
—w(u) du) —1/2

H(s) = (149 + (1= Q)1+ 5% T

» R=1.713£0.020 and z = 1087.9 = 1.2
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Combined Data Sources

» We can use an already constructed emulator that allows for
five different cosmological parameters (like Q,,, Ho, w(u)...)

» We would like to blend these parameters with our current
information obtained from the supernovae data

» This type of analysis should be more robust as it employs
multiple data sources (like supernova, CMB, BAO...)
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Hermite arthogaenal
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Add more
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supernovae model

Add BAD data to the
models

Add CME data te the
madels using
néerarchical modeling

Experimental design
= where is more data
needed on the z axis

Add other types of
dakta fo the model

Finish writing up
dissenation
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