
{ Dane Gardner, Christian Romano, Jon Welters }

Introduction
Within Linux, the process scheduler is responsible

for distributing the work load between multiple CPUs on

a multiprocessor system. By using Processor Affinity

settings, one can manually override the scheduling

algorithm and specify a particular CPU for a particular

task. This can, in certain circumstances, increase the

efficiency of a task by running it on the same processor

- which may have cached it locally, or may be closer to a

piece of needed hardware.

Non-Uniform Memory Access (NUMA) is an

architecture found in some multiprocessor systems

where locally accessed memory will be faster than

accessing memory in a neighboring location.

Objective
Our project involved modifying a high performance

computing cluster using processor affinity settings and

comparing several benchmarking metrics with baseline

results to see where improvements could be made in a

production environment.

Conclusions
Throughout our research, we found highly differential results that depended on the

hardware being used. The key advantage to using affinity is that system noise can be

reduced. We've seen both average bandwidth increase and decrease while setting affinity,

the commonality being reduced noise. The disadvantage is, many times this can come

with a cost of performance. In some models affinity is used to isolate system process to

one CPU while user processes can use the rest. In our case, this meant that 1/8 of our

systems processor power was not usable by user applications. This becomes a more

manageable number if you increase the number of processing cores available for system

usage. The downside to isolating one core for system processes is that typically the system

will never fully utilize one core, so in essence your throwing away some CPU cycles. What

you have to decide on a system by system basis is if losing CPU cycles is worth having

greatly reduced noise. In recent years the Linux kernel has been updated to support

CPUSETs. In the future, Linux is going to have to revamp the way it schedules processes

as more complex systems become the norm. In the interim it is necessary to use middle

ware to optimize system performance. To fulfill one of the project goals, a system was

developed that automates the process of creating an affinity policy on large clusters.

Future Work
It is important to realize that hardware changes rapidly. Different hardware requires

different strategies need to be taken as far as affinity scheduling goes. When CPU's begin

being produced with more cores on a single die, it becomes an option to jail system

processes to one core to reduce OS noise and leave the remainder for the user processes.

While this isn't practical in a four core system, it certainly becomes practical in a twenty

core system. Research in affinity should continue as computer hardware advances. Each

hardware configuration must be analyzed separately in order to determine the appropriate

operating system configuration for that hardware. In the future it will be necessary to

automate the systems analysis to determine the best affinity configuration for a given

system. Due to time constraints, our group was unable to fully look into the affinity

scheduling capabilities of Torque and other job schedulers.

Testbed
Our team built a 10 node cluster using the latest

versions of CentOS Linux and the Perceus cluster

provisioning suite and interconnected with SDR

InfiniBand and Gigabit Ethernet. The hardware on each

of the nodes (two of which were former Roadrunner

Phase I nodes) was slightly different from the others,

giving our group an excellent vehicle to test the effects

of changes in a variety of hardware situations.

Methods
Linux kernel objects called CPUSETs allow a

system administrator to partition sets of processors

and memory into specific execution areas. This forces

the sequestration of processes to specific hardware.

These rules are inherited to children processes, which

allows secure, ‘jailed’ subdivisions of hardware in high

performance computing situations. CPUSETs are,

however, limited to already running tasks.

The NUMACTL tool, however, can be used to

implement memory policies that compliment an

already invoked CPUSET arrangement by affecting as a

process is invoked. Hardware visualizations and

statistics are also part of the tool package, and make

the administrator’s life easier.

Hardware Interrupt Requests (IRQs) can flood a

system making it unstable; having the ability to cloister

IRQs to a specific processor can clean up system noise

and prevent unnecessary communication between

cores and sockets. Linux includes features to set IRQ

affinities via the file system, in much the same way as

CPUSETs.

In order to speed and ease testing, our group

developed a script that implements a CPUSET and IRQ

affinity policy from flat configuration files. This was a

great way to implement an affinity policy, and may be

useful to cluster administrators.

Dane Gardner, Colorado School of Mines

Christian Romano, University of New Mexico

Jonathon Welters, Michigan Technological University

Mentors: Andrew Shewmaker, HPC-5
Ben McClelland, HPC-3

Faculty: Andree Jacobson, UNM

Benchmarking
We concentrated on three system bottle-necks for

our benchmarking to see what effect changes in affinity

had on system performance: memory bandwidth, IP

socket bandwidth and InfiniBand RDMA performance.

For our memory bandwidth tests, we used a

modified version of the Stream benchmark which

allowed for more detailed logging.

We used IPerf to test both TCP and UDP speeds on

our Gigabit Ethernet and Single Data Rate (SDR)

InfiniBand.

Remote Direct Memory Access over InfiniBand is a

big deal in cluster computing. Benchmarking this

against a baseline was an important aspect of our

project. QPerf, included in OFED, was used for our

measurements of both unidirectional and bidirectional

bandwidths and latencies.

Results
Our tests included one data point within the cache

and one giving a memory bandwidth only test. Speed

results on each of our testbed systems varied. From

increases to decreases.

In most situations, however, we saw speed

increases and noise reduction, as seen in the graphs

below.

Modifications to the system IRQ affinities also

found network performance increases under certain

circumstances. On one node we were seeing increases

of over 30 Mb/sec using Gigabit Ethernet.

Various CPU and IRQ affinities in our tests using

QPerf to measure RDMA bandwidth over InfiniBand

yielded no noticeable changes. However we are

confident that additional testing is required using other

architectures that were not available to us during our

project.

Operating System Noise
In an HPC cluster, the operating system (running on each

node) can cause system noise through ‘cache thrashing’ and

IRQs bothering an otherwise healthy user application. Caging

the system processes to an individual CPU, can prevent shared

caches across the system from being repeatedly dirtied, thus

speeding up memory operations that depend upon the cache.

These graphs show memory bandwidth tests on a system with
the default scheduling configuration versus one that has been
optimized for a reduction in system noise using CPUSETs.

An increase in non-cache memory speeds can be seen
with simply setting the system processes to a single
processor.

A processor accessing non-local memory will have
longer access times than if it accessed it’s local memory.

Interrupts from hardware, going to non-local processors,
can cause variances in user application performance.

Network variances seen on our two socket nodes before
CPUSETs smoothed things out on the right.

On our Road Runner Phase I node, we were able to see
significant noise reduction and speed increases when
we switched the memory bandwidth test to non-system
cores.

LA-UR 09-04881

	Slide Number 1

