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Motivation 
 As machines grow in size 

 MTBF decreases 
 Jaguar had 2.33 average failures/day from 2008 to 2010 

 Applications have to tolerate faults 
 Challenges for exascale: 

 Disk-based (NFS reliable disk) checkpointing is slow 
 System-level checkpointing can be expensive 
 Scalable checkpointing/restart can be a communication 

intensive process 
 Job scheduler prevent fault tolerance support in runtime 
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Motivation (cont.) 
 Applications on future exascale machines need fast, 

low cost and scalable fault tolerance support 
 Previous work:  

 double in-memory checkpoint/restart scheme 
 In production version of Charm++ since 2004 
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Double in-memory Checkpoint/Restart Protocol 
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Runtime Support for FT 
 Implemented in Charm++/Adaptive MPI runtime 
 Automatically checkpointing threads 

 Including stack and heap (isomalloc) 
 User helper functions 

 To pack and unpack data 
 Checkpointing only the live variables 
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Local Disk-Based Protocol 
Double in-memory checkpointing 

 Memory concern 
 Pick checkpointing time where global state is small 

 MD, N-body, quantum chemistry 

Double In-disk checkpointing 
 Make use of local disk (or SSD) 
 Also does not rely on any reliable storage 
 Useful for applications with very big memory footprint 
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Previous Results: Performance Comparisons with Traditional 
Disk-based Checkpointing 
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Previous Results: Restart with Load Balancing 
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LeanMD, Apoa1, 128 processors 



Previous Result: Recovery Performance 
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10 crashes 
128 processors 
Checkpoint every 10 
time steps 



FT on MPI-based Charm++ 
 Practical challenge: job scheduler 

 Job scheduler kills the entire job when a process fails 
 MPI-based Charm++ is portable on major 

supercomputers 
 A fault injection scheme in MPI machine layer 

 DieNow()  
 MPI process stop responding 
 Fault is detected by keep-alive messages 

 Spare processors to replace failed ones  
 Demonstrated on 64K cores of BG/P machine 
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Performance at Large Scale 
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Optimization for scalability 
 Communication bottlenecks 

 Checkpoint/restart time takes O(P) time 
 Optimizations: 

 Collectives (barriers) 
 Switch O(P) barrier to a tree-based barrier 

 Stale message handling 
 Epoch number 
 A phase to discard stale messages as quickly as possible 

 Small messages 
 Streaming optimization 
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LeanMD Checkpoint Time 
before/after Optimization 
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Checkpoint Time for Jacobi/MPI 
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Kraken 

Running on AMPI 



LeanMD Restart Time 
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Conclusions and Future work 
 In-memory checkpointing after optimization is 

scalable towards Exascale 
 Future work: 

 Non-blocking checkpointing 
 Compress checkpoint data 

FTXS 2012 17 


	A Scalable Double In-memory Checkpoint and Restart Scheme Towards Exascale 
	Motivation
	Motivation (cont.)
	Double in-memory Checkpoint/Restart Protocol
	Runtime Support for FT
	Local Disk-Based Protocol
	Previous Results: Performance Comparisons with Traditional Disk-based Checkpointing
	Previous Results: Restart with Load Balancing
	Previous Result: Recovery Performance
	FT on MPI-based Charm++
	Performance at Large Scale
	Optimization for scalability
	LeanMD Checkpoint Time before/after Optimization
	Checkpoint Time for Jacobi/MPI
	LeanMD Restart Time
	Conclusions and Future work

