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Motivation

As machines grow in size
e MTBF decreases

o Jaguar had 2.33 average failures/day from 2008 to 2010
* Applications have to tolerate faults
Challenges for exascale:
e Disk-based (NFS reliable disk) checkpointing is slow
 System-level checkpointing can be expensive

e Scalable checkpointing/restart can be a communication
intensive process

 Job scheduler prevent fault tolerance support in runtime
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Motivation (cont.)

Applications on future exascale machines need fast,
low cost and scalable fault tolerance support

e Previous work:
» double in-memory checkpoint/restart scheme

» In production version of Charm++ since 2004
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Double in-memory Checkpoint/Restart Protocol

PEO PE1 PE2 PE3
®® 0| 0. ® ® © ®DQ
mEC o EYl. | H 1 ]
A A A AALl A & A A

PE1 crashed ( lost 1 processor )

PEO PE2 PE3
® DD ®EOC| OEE®
. | DE O
Al [B] [C] 0
VY ALB a4
@ object checkpoint 1 A checkpoint 2 CA) restored object

FTXS 2012 4



/ 7
Runtime Support for FT

Implemented in Charm++/Adaptive MPI runtime
Automatically checkpointing threads

e Including stack and heap (isomalloc)
User helper functions

e To pack and unpack data

» Checkpointing only the live variables
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Local Disk-Based Protocol

® Double in-memory checkpointing
e Memory concern
e Pick checkpointing time where global state is small
« MD, N-body, quantum chemistry
® Double In-disk checkpointing
e Make use of local disk (or SSD)
e Also does not rely on any reliable storage
e Useful for applications with very big memory footprint
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Previous Results: Performance Comparisons with Traditional

Disk-based Checkpointing
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Previous Results: Restart with Load Balancing

Without LB With LB
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Previous Result: Recovery Performance
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FT on MPI-based Charm++

Practical challenge: job scheduler

 Job scheduler kills the entire job when a process fails
MPI-based Charm++ is portable on major
supercomputers
A fault injection scheme in MPI machine layer

e DieNow()

« MPI process stop responding
 Fault is detected by keep-alive messages

e Spare processors to replace failed ones
e Demonstrated on 64K cores of BG/P machine
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Performance at Large Scale

Checkpoint Time — Intrepid(leanMD)

125000 atoms —s—
08 | 1 million atoms == ——

0.6 t

Time (s)

04

02t

4K 8K 16K 32K 064K

#cores

FTXS 2012

Time (s)

Restart Time — Intrepid(leanMD)

125000 atoms ——s—
I million atoms =====me==

4K 8K 16K

#cores

32K 64K

22



Optimization for scalability

Communication bottlenecks

~

e Checkpoint/restart time takes O(P) time
Optimizations:
e Collectives (barriers)
« Switch O(P) barrier to a tree-based barrier

e Stale message handling
« Epoch number
A phase to discard stale messages as quickly as possible

e Small messages

» Streaming optimization
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before/after Optimization

Checkpoint Time — Intrepid(leanMD)

1 ! ! T T
125000 atoms —=—
L 1 million atoms == P
0.8
2 06}
g
= 04
02 ¢
0

4K 8K 16K 32K 64K
#cores

FTXS 2012

Checkpoint Time — Intrepid(leanMD)

0.005 : , . .
125000 atoms —=—
1 million atoms === P
0.0045 t
=
Q) -
g 0.004
[—.
0.0035 t
0.003

4K 8K 16K 32K 64K

#cores

14



Checkpoint Time for Jacobi/MPI
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LeanMD Restart Time
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Conclusions and Future work

* In-memory checkpointing after optimization is
scalable towards Exascale

* Future work:
e Non-blocking checkpointing
e Compress checkpoint data
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