
Gengbin Zheng
Xiang Ni

Laxmikant V. Kale

Parallel Programming Lab
University of Illinois at Urbana-Champaign

Motivation
 As machines grow in size

 MTBF decreases
 Jaguar had 2.33 average failures/day from 2008 to 2010

 Applications have to tolerate faults
 Challenges for exascale:

 Disk-based (NFS reliable disk) checkpointing is slow
 System-level checkpointing can be expensive
 Scalable checkpointing/restart can be a communication

intensive process
 Job scheduler prevent fault tolerance support in runtime

 FTXS 2012 2

Motivation (cont.)
 Applications on future exascale machines need fast,

low cost and scalable fault tolerance support
 Previous work:

 double in-memory checkpoint/restart scheme
 In production version of Charm++ since 2004

FTXS 2012 3

Double in-memory Checkpoint/Restart Protocol

FTXS 2012 4

H I J A B C E D F G

A B C D E F G H I J

A B C F G D
E

H
I

J

A B C D E F G H I J

A

F

C
D

E F G H I J

H I J A B C D E

B

G

A A A A

PE0 PE1 PE2 PE3

PE0 PE2 PE3

object checkpoint 1 checkpoint 2 restored object

PE1 crashed (lost 1 processor)

Runtime Support for FT
 Implemented in Charm++/Adaptive MPI runtime
 Automatically checkpointing threads

 Including stack and heap (isomalloc)
 User helper functions

 To pack and unpack data
 Checkpointing only the live variables

FTXS 2012 5

Local Disk-Based Protocol
Double in-memory checkpointing

 Memory concern
 Pick checkpointing time where global state is small

 MD, N-body, quantum chemistry

Double In-disk checkpointing
 Make use of local disk (or SSD)
 Also does not rely on any reliable storage
 Useful for applications with very big memory footprint

FTXS 2012 6

Previous Results: Performance Comparisons with Traditional
Disk-based Checkpointing

0.001

0.01

0.1

1

10

100

1000

6.4 12.8 25.6 51.2 102 205 410 819 1638 3277 6554

Problem size (MB)

C
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
)

double in-memory
(Myrinet)
double in-memory
(100Mb)
Local Disk

double in-disk
(Myrinet)
NFS disk

FTXS 2012 7

Previous Results: Restart with Load Balancing

Without LB

0

1

2

3

4

1 101 201 301 401 501 601

Timestep

S
i
m
u
l
a
t
i
o
n

t
i
m
e

p
e
r

s
t
e
p

(
s
)

With LB

0

1

2

3

4

1 101 201 301 401 501 601

Timestep
S
i
m
u
l
a
t
i
o
n

t
i
m
e

p
e
r

s
t
e
p

(
s
)

FTXS 2012 8

LeanMD, Apoa1, 128 processors

Previous Result: Recovery Performance

FTXS 2012 9

10 crashes
128 processors
Checkpoint every 10
time steps

FT on MPI-based Charm++
 Practical challenge: job scheduler

 Job scheduler kills the entire job when a process fails
 MPI-based Charm++ is portable on major

supercomputers
 A fault injection scheme in MPI machine layer

 DieNow()
 MPI process stop responding
 Fault is detected by keep-alive messages

 Spare processors to replace failed ones
 Demonstrated on 64K cores of BG/P machine

FTXS 2012 11

Performance at Large Scale

FTXS 2012 12

Optimization for scalability
 Communication bottlenecks

 Checkpoint/restart time takes O(P) time
 Optimizations:

 Collectives (barriers)
 Switch O(P) barrier to a tree-based barrier

 Stale message handling
 Epoch number
 A phase to discard stale messages as quickly as possible

 Small messages
 Streaming optimization

FTXS 2012 13

LeanMD Checkpoint Time
before/after Optimization

FTXS 2012 14

Checkpoint Time for Jacobi/MPI

FTXS 2012 15

Kraken

Running on AMPI

LeanMD Restart Time

FTXS 2012 16

Conclusions and Future work
 In-memory checkpointing after optimization is

scalable towards Exascale
 Future work:

 Non-blocking checkpointing
 Compress checkpoint data

FTXS 2012 17

	A Scalable Double In-memory Checkpoint and Restart Scheme Towards Exascale
	Motivation
	Motivation (cont.)
	Double in-memory Checkpoint/Restart Protocol
	Runtime Support for FT
	Local Disk-Based Protocol
	Previous Results: Performance Comparisons with Traditional Disk-based Checkpointing
	Previous Results: Restart with Load Balancing
	Previous Result: Recovery Performance
	FT on MPI-based Charm++
	Performance at Large Scale
	Optimization for scalability
	LeanMD Checkpoint Time before/after Optimization
	Checkpoint Time for Jacobi/MPI
	LeanMD Restart Time
	Conclusions and Future work

