A Scalable Double In-memory
Checkpoint and Restart Scheme
Towards Exascale

—

Motivation

As machines grow in size
e MTBF decreases

o Jaguar had 2.33 average failures/day from 2008 to 2010
* Applications have to tolerate faults
Challenges for exascale:
e Disk-based (NFS reliable disk) checkpointing is slow
 System-level checkpointing can be expensive

e Scalable checkpointing/restart can be a communication
intensive process

 Job scheduler prevent fault tolerance support in runtime

FTXS 2012

Motivation (cont.)

Applications on future exascale machines need fast,
low cost and scalable fault tolerance support

e Previous work:
» double in-memory checkpoint/restart scheme

» In production version of Charm++ since 2004

FTXS 2012 <

Double in-memory Checkpoint/Restart Protocol

PEO PE1 PE2 PE3
®® 0| 0. ® ® © ®DQ
mEC o EYl. | H 1]
A A A AALl A & A A

PE1 crashed (lost 1 processor)

PEO PE2 PE3
® DD ®EOC| OEE®
. | DE O
Al [B] [C] 0
VY ALB a4
@ object checkpoint 1 A checkpoint 2 CA) restored object

FTXS 2012 4

/ 7
Runtime Support for FT

Implemented in Charm++/Adaptive MPI runtime
Automatically checkpointing threads

e Including stack and heap (isomalloc)
User helper functions

e To pack and unpack data

» Checkpointing only the live variables

FTXS 2012 B

Local Disk-Based Protocol

® Double in-memory checkpointing
e Memory concern
e Pick checkpointing time where global state is small
« MD, N-body, quantum chemistry
® Double In-disk checkpointing
e Make use of local disk (or SSD)
e Also does not rely on any reliable storage
e Useful for applications with very big memory footprint

FTXS 2012 6

Previous Results: Performance Comparisons with Traditional

Disk-based Checkpointing

Checkpoint overhead (s)

1000

100

10

1

Ot

0.01

0.001

/-/'/./

—

e B B e e O R o e Lo 1 0 ot e b 1) ey O M0 By Y e B e e A S Aot o i
Problem size (MB)

FTXS 2012

—#—double in—memory
(Myrinet)
double in—memory
(100Mb)
—>¢—Local Disk

—X— double in—disk
(Myrinet)
—8— NFS disk

Previous Results: Restart with Load Balancing

Without LB With LB

54 g 4
Q. a,
S 3 r £ _ 3t
EIC \ e
£5° §52
RN R W iy S o et Moo
= £
»no 0 n 0

1 101 201 301 401 501 601 1 101 201 301 401 501 601

Timestep Timestep

LeanMD, Apoal, 128 processors

FTXS 2012 8

Previous Result: Recovery Performance

nd=s)

step {seco

nulation

crash

ot S

load balancing

o

L

L

IWLER

"

I
100

I
200

FTXS 2012

I
300

Tine

step

I
o

I
a0

I
1o

@10 crashes

®128 processors
®Checkpoint every 10
time steps

FT on MPI-based Charm++

Practical challenge: job scheduler

 Job scheduler kills the entire job when a process fails
MPI-based Charm++ is portable on major
supercomputers
A fault injection scheme in MPI machine layer

e DieNow()

« MPI process stop responding
 Fault is detected by keep-alive messages

e Spare processors to replace failed ones
e Demonstrated on 64K cores of BG/P machine

FTXS 2012 18

Performance at Large Scale

Checkpoint Time — Intrepid(leanMD)

125000 atoms —s—
08 | 1 million atoms == ——

0.6 t

Time (s)

04

02t

4K 8K 16K 32K 064K

#cores

FTXS 2012

Time (s)

Restart Time — Intrepid(leanMD)

125000 atoms ——s—
I million atoms =====me==

4K 8K 16K

#cores

32K 64K

22

Optimization for scalability

Communication bottlenecks

~

e Checkpoint/restart time takes O(P) time
Optimizations:
e Collectives (barriers)
« Switch O(P) barrier to a tree-based barrier

e Stale message handling
« Epoch number
A phase to discard stale messages as quickly as possible

e Small messages

» Streaming optimization

FTXS 2012 13

before/after Optimization

Checkpoint Time — Intrepid(leanMD)

1 ! ! T T
125000 atoms —=—
L 1 million atoms == P
0.8
2 06}
g
= 04
02 ¢
0

4K 8K 16K 32K 64K
#cores

FTXS 2012

Checkpoint Time — Intrepid(leanMD)

0.005 : , . .
125000 atoms —=—
1 million atoms === P
0.0045 t
=
Q) -
g 0.004
[—.
0.0035 t
0.003

4K 8K 16K 32K 64K

#cores

14

Checkpoint Time for Jacobi/MPI

Time (s)

Checkpoint Time — Kraken(Jacobi AMPI)

Jacobi(90 MB/Gore) ——
0.8 |
0.6 |
— R -8
0.4 |
0.2 |
0 ' ' ' ' '
#cores
Running on AMPI
FTXS 2012

Kraken

45

LeanMD Restart Time

Time (s)

Restart Time — Intrepid(leanMD)

"125000 atoms —s—
1 million atoms =s=smeeee

4K 8K 16K 32K 64K
#cores

FTXS 2012

Restart Time — Intrepid(leanMD)

2 , i : .
0 125000 atoms —=—
1 mllllOIl atoms === [Terre

0.15 a
@ o.
2 0.1}
.E

0.05

0

4K 8K 16K 32K 64K
#cores

16

Conclusions and Future work

* In-memory checkpointing after optimization is
scalable towards Exascale

* Future work:
e Non-blocking checkpointing
e Compress checkpoint data

FTXS 2012 7

	A Scalable Double In-memory Checkpoint and Restart Scheme Towards Exascale
	Motivation
	Motivation (cont.)
	Double in-memory Checkpoint/Restart Protocol
	Runtime Support for FT
	Local Disk-Based Protocol
	Previous Results: Performance Comparisons with Traditional Disk-based Checkpointing
	Previous Results: Restart with Load Balancing
	Previous Result: Recovery Performance
	FT on MPI-based Charm++
	Performance at Large Scale
	Optimization for scalability
	LeanMD Checkpoint Time before/after Optimization
	Checkpoint Time for Jacobi/MPI
	LeanMD Restart Time
	Conclusions and Future work

