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Abstract

Developing Information-gap Models of Uncertainty for Test-analysis Correlation
(Approved for unlimited release on July 1, 2002. LA-UR-02-4033. Unclassified.)

Relying on numerical simulations, as opposed to field measurements, to analyze the structura response of complex systems requires
that the predictive accuracy of the models be assessed. This activity is generally known as “model validation”. Model validation requires
the comparison of model predictions with test measurements at several points of the design / operational space. For example, numerical
models of flutter must be validated for various combinations of fluid velocity and wing angle-of-attack. Because validation experiments
become expensive when the system investigated is complex, only a few data sets are generaly available. This lack of adequate
representation of the design / operational space makes it questionable whether statistical models of predictive accuracy can be devel oped.

In this work, we focus on one aspect of model validation that consists in assessing the robustness of a decision to uncertainty. In this
context, “decision” refers to assessing the accuracy of predictions and verifying that the accuracy is adequate for the purpose intended.
Likewise, “uncertainty” can represent experimental variability, variability of the model’s parameters but also inappropriate modeling rules
in regions of the design / operational space where experiments are not available.

An alternative to the theory of probability is applied to the problem of assessing the robustness of model predictions to sources of
uncertainty. The analysis technique is based on the theory of information-gap, which models the clustering of uncertain events in
embedded convex sets instead of assuming a probability structure. Unlike other theories developed to represent uncertainty, information-
gap does not assume probability density functions (which the theory of probability does) or membership functions (which fuzzy logic
does). It is therefore appropriate in cases where limited data sets are available. The main disadvantage of information-gap is that the
efficiency of sampling techniques cannot be exploited because no probability structure is assumed. Instead, the robustness of a decision
with respect to uncertainty is studied by solving a sequence of optimization problems, which becomes computationally expensive as the
number of decision and uncertainty variables increases.

The concepts are illustrated with the propagation of a transient impact through a layer of hyper-elastic material. The numerical model
includes a softening of the hyper-elastic material’s constitutive law and contact dynamics at the interface between metallic and crushable
materials. Although computationally expensive, it is demonstrated that the information-gap reasoning can greatly enhance our
understanding of a moderately complex system when the theory of probability cannot be applied.
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Outline

» e The Foam Impact Experiment
* Brief Overview of Information-gap Theory

 Implementation and Results of Info-gap Analysis
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Hyper-foam Impact Experiments

 Physical experiments are performed to study the
propagation of an impact through an assembly of
metallic and crushable (foam pad) components.
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Experimental Data

e Several configurations of the system are tested by
varying the foam pad thickness and drop height.

l Foam Pad .
- $_ ........ Thickness High Drop

Low Drop High Drop
(13in./0.3 m) | (155in./4.0 m) Low Drop
Thin Layer
(0.25 in. / 10 Replicates 5 Replicates
6.3 mm)
Thick Layer
(0.50 in. / 10 Replicates 5 Replicates
12.6 mm)
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Variability

e Significant variability is observed from the replicate
measurements during physical testing.
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Response Features

e The response features of interest are the peak
acceleration (PAC) and the time-of-arrival (70A) at
output sensor 2.
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SDOF Modeling

e A single degree-of-freedom (SDOF) oscillator model
is developed to predict the features of interest without
describing the dynamics with high-fidelity.

Fint(t) C

— The only source of non-linearity
e . . of the SDOF model is defined by
mx(t) + CX(t) + Fint (t) = I'n)(app”eu(t) the internal force F, (?).
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Parameters of the SDOF Model

e The input variables that control the SDOF model are:

Variable | Description Minimum | Maximum | Nominal
1 Foam Thickness (inch) 0.25 0.50 0.25
2 Drop Height (inch) 13.00 155.00 13.00
3 Linear stiffness (Ibf/inch) 0.00 ? ?
4 Damping (Ibf x sec/inch) 0.00 ? ?
S Cubic stiffness (Ibf/inch?) 0.00 ? ?

 Example of a cubic stiffness non-linearity:
m ...T..X(t)

Fnt (D)= kn|X3(t) ¢ I -
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Finite Element Modeling

e A finite element (FE) model is developed to simulate
the impact dynamics with high-fidelity.

Min | Input Max\

1 1 —_— ° °

A pI /2 y_M(pI,ooo,plo)
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09 | p, | 11 =~ — The main sources of non-linearity are

the hyper-foam constitutive behavior
0 | p | 1 and contact between the crushable
0 | Py 1 Y and metallic components.
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Parameters of the FE Model

e The input variables that control the FE model are:

Variable | Description Minimum | Maximum | Nominal
1 Foam Thickness (inch) 0.25 0.50 0.25
2 Drop Height (inch) 13.00 155.00 13.00
3 Angle 1 (degree) 0.00 2.00 0.50
= Angle 2 (degree) 0.00 2.00 0.50
5 Bolt Preload (psi) 0.00 500.00 250.00
6 Stress Scaling (unitless) 0.80 1.20 1.00
7 Strain Scaling (unitless) 0.80 1.00 1.00
8 Input Scaling (unitless) 0.90 1.10 1.00
9 Friction (unitless) 0.00 1.00 0.10
10 Bulk Viscosity (unitless) 0.00 1.00 0.60
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Predictive Accuracy Assessment

e The objective of this study is to assess the model’s
predictive accuracy throughout the design space.

y
Prediction Max.

Error (e)

PDF Max.

PDF

Drop Height (p;)
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Requirements

 To generate a numerical simulation that we can trust
to predict the dynamics of interest, we need to ...

— Quantify the experimental uncertainty.
— Quantify the modeling uncertainty.

— Understand where the uncertainty comes from
and what its effects are.

— Make decisions: Is the model good enough?

» What happens when uncertainty cannot be represented
probabilistically?
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Outline

e The Foam Impact Experiment
» e Brief Overview of Information-gap Theory

 Implementation and Results of Info-gap Analysis
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Motivations

e How to describe uncertainty when evidence is not
available that probability theory is adequate?

e How to describe expert judgment, scarce data sets,
rare events or epistemic uncertainty (i.e., lack-of-
knowledge)?

 How to interface other theories with probabilities?

e How to propagation alternate models of uncertainty
through our “black-box” computational codes?
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General Information Theory

Y
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Theory of Information-gap

 Information-gap seeks to represent the gap between
what is currently known and what is needed to make
a decision.

s® v
Uncertainty

Level a

’ Family of nested sets:
U(uo;a)={4 ‘ (u—uO)TW_I(u—uo)Sa} az0

e The basic principle of information-gap is to model the
clustering of uncertain events in families of nested
sets instead of assuming a probability structure.
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Components of Info-gap

e The three components of info-gap analysis are the
decision model, the info-gap model of uncertainty and

the performance criterion.
@ Info-gap model
ue Uuga), a0

@ Decision model
y = M(q;u)
Decision /7 N\ Uncertainty Nominal /7 N\ Uricertainty
settings u, parameter a

variables q variables u

@ Performance criterion
R(g;u) <R, () Or R(g;u)>R,. or

any other criterion.

Performance Critical level or
criterion target performance
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Remarks

e An information-gap model includes all possible
representations of uncertainty within the nested sets.

* Information-gap focuses on decision making instead
of attempting to represent the uncertainty.

 Sampling cannot be taken advantage of to propagate
uncertainty because no probability structure is
assumed.

— Optimization is used to propagate uncertainty, which may
be less efficient & rigorous (convergence?) than sampling.
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Outline

e The Foam Impact Experiment
* Brief Overview of Information-gap Theory

»  Implementation and Results of Info-gap Analysis
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Engineering Application

 The objective is to identify the numerical models that
best reproduce the physical measurements.

= @

Measured Simulated
Responses Responses
Physical - ~ / Finite Element
Experiments A greem ent? Modeling

e Experimental and modeling sources of uncertainty
are accounted for in a non-probabilistic framework.
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Analogy

e The performance of a numerical model is deemed
acceptable if the model provides less than R ~20%
test-analysis correlation error.

Information-gap Analysis | Symbol Foam Impact Application
Decision model y=M(q;u) | Finite element model
Output y Features PAC, TOA
Decision variables q Input parameters, p,, p,, ...
Uncertainty variables u Input parameters, p,, p,, ...
Horizon-of-uncertainty a Range of an interval
Performance criterion R(g;u) | Prediction error, e=||y’*"-y||
Acceptance criterion R(q;uw)<R | “No more than 20% error”
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Information-gap Analysis — Step 1

 In an info-gap analysis, uncertainty is propagated by
optimizing the performance of the system at any
given uncertainty level. [ _
Uncertainty R (o) = = r(nuax R(g;u)

level (a) 0’ k)

_ /e

................................ _ Whether the performance R(¢;u)
: iS maximized or minimized

O l depends on the type of info-gap
: analysis performed.

Performance
metric (R")

R*:(ak)
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Information-gap Models

e Examples of info-gap models used in the analysis:

— Uncorrelated intervals:
U(uo;oc):{u | - < (u—uO)S+(x}, a0

— Correlated intervals:
U(u,,a)= {u ‘ (u—uO)TW_I(u—uo)S oc} a0
— Hybrid probabilistic/info-gap models:
u=N(u,,;Z,,),

U, 2,;a,b)= {(ﬂu )
a>0, b=0

- 1| <aand|z,, -3, || < b}
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Information-gap Analysis — Step 2

 The allowable uncertainty a* is obtained by reading
the curve of performance (R*) versus uncertainty (a)

backwards, starting from the target performance R.
Uncertainty
level ()

Allowable
uncertainty D7 A T ——

1

of =Argmax max {R(q;u)|R(q;u) <R.}
a>0 U(uo:'a?

‘ Performance
Region of acceptable : metric (R")
performance-uncertainty

tradeoff. Target
performance R
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Immunity to Uncertainty

* Question of immunity: What is the largest level of
uncertainty a” that the system can sustain without
sacrificing the performance requirement, R<R .?

— The immunity a” quantifies

the

adverse effect of

uncertainty on the system’s
performance R(q;u).

R=20%

o =Argmax max {R(q;u)|R(q;u) <R.}
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Opportunity Arising From Uncertainty

* Question of opportunity: What is the smallest level of
uncertainty b»° that could potentially improve the
performance while satisfying the requirement, R<R.?

— The opportunity 5"
quantifies the beneficial
effect of uncertainty on
the performance R(q;u).

b =Argmin min {R(q;u) |R(q;u)<R,}
a>0 U(uo;a)
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Decision-making

 When the sources of uncertainty are combined, which
performance can be expected and how much
uncertainty can be tolerated?

— To guarantee 20% prediction

error at most, no more than
17% uncertainty can be
tolerated.

If 40% wuncertainty could be
tolerated, it might be possible
to find a model that yields
perfect predictions. In this
case, however, no less than
28% error can be guaranteed.

b*=0.40

a*=0.17

R,=20%
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Hybrid Models of Uncertainty

e Can probability and info-gap models of uncertainty
be embedded?

3‘3100

— The uncertainty is represented
by a probability model whose
parameters are not precisely
known. This lack-of-knowledge
is represented by an info-gap
model of uncertainty.

80
60
40

20

Best Possible Test-analysis Error

u=N(u,z,,)
A - %0
H vi v 0 O
. t) o vs v, 0 O ) ”
] PB uu 0 0 Vs 0 Design Uncertainty ('%1) 11 Covariance Uncertainty (1/1)
5 (0 0 0 v,
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Summary

e Analysts must be conscious of the danger of relying
on representations of uncertainty that built-in more
assumptions than what is truly known.

* Alternate “theories” for representing uncertainty are
available. Fuzzy logic, the Dempster-Shafer theory of
plausibility and belief and information-gap have been
demonstrated on practical applications.

 Linking probabilities to the general information
theory is critical for decision-making.
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