~

Streaming B-Trees
for
File System Grand Challenges

Michael A. Bendert Bradley C. Kuszmaul*
Martin Farach-Coltont Charles E. Leiserson*

T SUNY Stony Brook
¥ Rutgers
* MIT

Grand Challenges

* At last year's HECIWG, some file-system grand
challenges were identified.

» Of interest to us, develop a file system that
supports:

- Creating 30,000 microfiles/second.

- Is -R at near disk bandwidth speed.

Our Results

* We have developed the Streaming B-tree,
which is a drop-in replacement for the B-tree
at the back end of file systems.

+ Streaming B-trees:
- Make »30,000 insertions per second.
- Do range queries at ~20-50% of disk bandwidth.

* When SB-trees are deployed in a file system,
we expect to solve two grand challenges.

Streaming B-Trees:
Fast Updates and Range Queries

Our data structures:
* Cache-oblivious lookahead array (COLA):

- Over 2 orders of maghitude improvement in inserts.

» Cache-oblivious shuttle tree:

- Asymptotically optimal point queries with fast
updates.

* Both:
- are cache oblivious (no platform dependent tuning).

- are fast for range queries.
- slower than B-trees for point queries.

Talk outline

* Analytic infroduction to the memory hierarchy.
» Description of data structures.
+ Experimental results.

- More data structures.

Disk- Access-Machine (DAM) Model

[Aggarwal, Vitter 88]

» Fast memory of size M
» Data grouped in blocks of size B
» Count # of memory (block) transfers

External
Memory

CPU

Cache-Oblivious (CO) Model

[Frigo, Leiserson, Prokop, Ramachandran 99]

Like DAM model, except 2and M unknown to algo.
* Parameters 2and M appear in proofs only.

* Results generalize to multilevel hierarchy.

* Platform independent.

B=7?

External
Memory

Great for disks, which have no "correct” block size.

Disk-resident CO data structures can offer
speedups [Bender, Farach-Colton, Kuszmaul '06]

B-Tree Inserts Are Slow
B-tree [Bayer, McCreight 72]

s

AlogzN) is suboptimal for inserts.

|—B—|

.

\

> height log N

» Can get faster inserts with small loss to searches
Cache-Aware Data Search Insert
Structure
B-tree [BM72] XlogzN) AlogN)
Be-tree [BFO3] | A(1/9)logeN) | A(1/£8-9)log,N)*
Bl/2_tree [BF03] A2logN) A(1/+Blog sN)*
BRT [BGVWOO] Alog,N) A(1/ B)log,N)*

* amortized

B-Tree Range Queries Are Slow

Range guery. scan of elements in chosen range.
- egqg.,"Is -R"
» B-tree (and B%-) leaves are scattered across disk.

* Random block transfers are 1-2 orders of
magnitude slower than sequential transfers.

/ v \ \
Ly sl

> height log N

J

CO trees keeps keys (nearly) in order on disk
— fast range queries.

CO Streaming B-Trees: Results

There exists cache-aware search/insert tradeoff.

Cache-Aware DS Search Insert

Be-tree [BF03] | AA(1/8)logeN) | A(1/£8)log ,N)*

This work. two points in fradeoff, cache obliviously.

CO Data Structure Search Insert

CO B-tree [BDF- AlogpxN) | Alog N + (log?N)/ B)*
CO0,BDIWO04 ,BFJ02]

CO Lookahead Array | log,N) A(1/ B)log, N)*
(COLA) [this talk]

CO Shuttle Tree XlogxN) | A((1/ B/ (leglog 1)) o g ,N +
[this talk] (log2N)/B)*

* amortized

Talk outline

* Analytic introduction to the memory hierarchy.
+ Description of COLA.
+ Experimental results.

- More data structures.

Cache-Oblivious Lookahead Array

+ Search: log,N) block transfers.

* Insert: A(1/B)log,N) amortized and Alog,N)
worst-case block transfers.

- Consists of | log N|arrays where the th array
stores 2’ elements.

- Each array is sorted and full (2’ elements) or "empty”
(O elements).

- Redundant "lookahead

pointers” aid searches. —f A
- Search scans only A1)
elements in each array! — > logN
B A 5

Talk outline

* Analytic introduction to the memory hierarchy.
» Description of data structures.
+ Experimental results.

- More data structures.

COLA vs. B-Tree*:
Experimental Results

Random inserts are 1300 times faster in COLA

* B-tree: 14 days to insert (1.5xmem)-size dataset.
* COLA: 14 minutes to insert the same dataset.
COLA inserts are consistently fast

* Random only 10% slower than presorted inserts.

* Presorted inserts are 3.1x slower than B-tree, but
COLA does not (yet) optimize for this case.

Tradeoff:
- Point searches are 3.5x slower than B-tree.

* Our B-tree's performance is comparable to Berkeley DB
[Bender, Farach-Colton, Kuszmaul 06].

COLA Test Specs

Machine:
* Dual Xeon 3.2GHz with 2MiB of L2 Cache.
- 4GiB RAM.

+ Two 2506B Maxtor 7L.250S0 SATA drives.
- Software RAID-0 with 64KiB stripe width.

» Linux 2.6.12-10-amd64-xeon in 64-bit mode.
Input:
+ 64-bit keys and values.

COLA vs. B-Tree: Random Inserts

- The COLA is 1300 times faster than the B-tree

- Expect the B-tree to level off at ~3 orders of
maghitude slower than the COLA.

7 COLA vs B-tree (Random Inserts)
10" T I T 1] 1 T T T
sb— o 2 Mins
SO F 1 1amins
g P — T L 161 Mins
8 8 Mins L+
|
210° : .
£ }
@ |
2 z
£ 4 I
%1& \ =
© b
2 \
< \
10° N -
! \ 1
4-COLA —— “14 Days
[B-tree —— —- 7
1G L | |]]]

2 L L I
223 221 222 223 224 225 22& 22? 228 22'3 230
Number of Inserts (N)

COLA vs. B-Tree: Searches

The COLA is 3.5 times slower for searches
- N=230_1
- Keys were inserted in order for the B-tree

102 . CCfLA VS B—ItreeI(Rapdcn:i Selamhfas} :

[4-COLA

[B-tree ———- I
E -~
5 T
@ -~

e

[¥}] o -
T ﬂ__(,.ﬂ/ FJ//
(73] Pl P
@ // T
£ -~ //
S0t 7 _— .
= C .]
oy /// _MM/
w [o
D -
D
©
| -
@
>
<C

1GU . 1 s 1 L L L 1 s 1 L 1 s 1
20 22 o4 28 o8 10 912 o4
Number of Searches

Comparison

* B-tree gives ~100/insertions/second/disk.
* COLA gives ~150,000 insertions/second/disk.

- But point queries are 3.5x slower than B-trees.

* We have a new implementation that:

- handles 20K-30K.

- Point queries are 40% slower than B-trees.
- handles variable-length keys.

Talk outline

* Analytic introduction to the memory hierarchy.
» Description of data structures.
+ Experimental results.

- More data structures.

Shuttle-Tree Overview

- Cache oblivious.

» Fast inserts (O((1/ 8/legleg 7)) og 4N + (log2 N)/B))
- using buffers that are (recursively) shuttle trees.

+ Searches asymptotically match B-trees at
AloggN). (COLA searches are only log,N).)

- using recursive cache-oblivious layout.
* Fast range queries.
- Layout keeps elements (nearly) in order.

« Uses PMA [Bender, Demaine, Farach-Colton 00] to
keep layout dynamically.

Shuttle Tree Uses Buffers For

Fast Inserts

The Shuttle Treeis a CO tree with degree- 9(1)
nodes, where each node has buffers.

- Buffers are also shuttle trees.

Search:
» Walk down tree, looking in buffers.
+ Cost is (buffer searches) + (root-to-leaf path)).

Shuttle Tree Uses Buffers For

Fast Inserts

The Shuttle Treeis a CO tree with degree- 9(1)
nodes, where each node has buffers.

- Buffers are also shuttle trees.

Insert:
» Fill buffer before moving down tree.

» Push buffer size keys down at a time.
»+ Amortize moving down tree against buffer size.

Publications

* Cache-Oblivious Streaming B-Trees (SPAA 07)

- Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman,
Yonatan R. Fogel, Bradley C. Kuszmaul, Jelani Nelson

* Cache-Oblivious String B-trees (PODS 06)
- Michael A. Bender, Martin Farach-Colton, Bradley C. Kuszmaul

What next? Tokutek

*+ We are commercializing this technology through
a startup called Tokutek.

+ We are looking for insert-intensive applications.
+ We are looking for engineers.

Buffer for Fast Inserts:

The Cache-Aware B?-Tree [Brodal, Fagerberg 03]

- Nodes have fanout & and total buffer size 5.

-
m}si ze-B-“ buffer

I

height h:|0938N< ﬁﬁ)\[ﬁi;(%)\i B
: .
m fanout 5&¢ m
\.
Search:

+ Walk down tree, looking in buffers.
+ Cost is A(buffer search)A) = A(1/&)logeN)

Buffer for Fast Inserts:

The Cache-Aware B?-Tree [Brodal, Fagerberg 03]

- Nodes have fanout & and total buffer size 5.

-
m}si ze-B-“ buffer

I

height h:|0935N< ﬁj%%)\[ﬁi;(%)\i B
: .
m fanout 5&¢ m
\
Inserts:

» Fill buffer before moving down tree.
* Push buffer size = B-“ keys down at a time.
» Cost is A A/ (buffer size)) = A(1/£B)logN)

