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Grand Challenges

* At last year's HECIWG, some file-system grand
challenges were identified.

» Of interest to us, develop a file system that
supports:

- Creating 30,000 microfiles/second.

- Is -R at near disk bandwidth speed.



Our Results

* We have developed the Streaming B-tree,
which is a drop-in replacement for the B-tree
at the back end of file systems.

+ Streaming B-trees:
- Make »30,000 insertions per second.
- Do range queries at ~20-50% of disk bandwidth.

* When SB-trees are deployed in a file system,
we expect to solve two grand challenges.



Streaming B-Trees:
Fast Updates and Range Queries

Our data structures:
* Cache-oblivious lookahead array (COLA):

- Over 2 orders of maghitude improvement in inserts.

» Cache-oblivious shuttle tree:

- Asymptotically optimal point queries with fast
updates.

* Both:
- are cache oblivious (no platform dependent tuning).

- are fast for range queries.
- slower than B-trees for point queries.



Talk outline

* Analytic infroduction to the memory hierarchy.
» Description of data structures.
+ Experimental results.

- More data structures.



Disk- Access-Machine (DAM) Model

[Aggarwal, Vitter 88]

» Fast memory of size M
» Data grouped in blocks of size B
» Count # of memory (block) transfers

External
Memory

CPU




Cache-Oblivious (CO) Model

[Frigo, Leiserson, Prokop, Ramachandran 99]

Like DAM model, except 2and M unknown to algo.
* Parameters 2and M appear in proofs only.

* Results generalize to multilevel hierarchy.

* Platform independent.

B=7?

External
Memory

Great for disks, which have no "correct” block size.

Disk-resident CO data structures can offer
speedups [Bender, Farach-Colton, Kuszmaul '06]




B-Tree Inserts Are Slow
B-tree [Bayer, McCreight 72]
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AlogzN) is suboptimal for inserts.
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» Can get faster inserts with small loss to searches
Cache-Aware Data Search Insert
Structure
B-tree [BM72] XlogzN) AlogN)
Be-tree [BFO3] | A(1/9)logeN) | A(1/£8-9)log,N)*
Bl/2_tree [BF03] A2logN) A(1/+Blog sN)*
BRT [BGVWOO] Alog,N) A(1/ B)log,N)*

* amortized



B-Tree Range Queries Are Slow

Range guery. scan of elements in chosen range.
- egqg.,"Is -R"
» B-tree (and B%-) leaves are scattered across disk.

* Random block transfers are 1-2 orders of
magnitude slower than sequential transfers.
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CO trees keeps keys (nearly) in order on disk
— fast range queries.



CO Streaming B-Trees: Results

There exists cache-aware search/insert tradeoff.

Cache-Aware DS Search Insert

Be-tree [BF03] | AA(1/8)logeN) | A(1/£8)log ,N)*

This work. two points in fradeoff, cache obliviously.

CO Data Structure Search Insert

CO B-tree [BDF- AlogpxN) | Alog N + (log?N)/ B)*
CO0,BDIWO04 ,BFJ02]

CO Lookahead Array | log,N) A(1/ B)log, N)*
(COLA) [this talk]

CO Shuttle Tree XlogxN) | A((1/ B/ (leglog 1)) o g ,N +
[this talk] (log2N)/B)*

* amortized



Talk outline

* Analytic introduction to the memory hierarchy.
+ Description of COLA.
+ Experimental results.

- More data structures.



Cache-Oblivious Lookahead Array

+ Search: log,N) block transfers.

* Insert: A(1/B)log,N) amortized and Alog,N)
worst-case block transfers.

- Consists of | log N|arrays where the th array
stores 2’ elements.

- Each array is sorted and full (2’ elements) or "empty”
(O elements).

- Redundant "lookahead

pointers” aid searches. —f A
- Search scans only A1)
elements in each array! — > logN
B A 5




Talk outline

* Analytic introduction to the memory hierarchy.
» Description of data structures.
+ Experimental results.

- More data structures.



COLA vs. B-Tree*:
Experimental Results

Random inserts are 1300 times faster in COLA

* B-tree: 14 days to insert (1.5xmem)-size dataset.
* COLA: 14 minutes to insert the same dataset.
COLA inserts are consistently fast

* Random only 10% slower than presorted inserts.

* Presorted inserts are 3.1x slower than B-tree, but
COLA does not (yet) optimize for this case.

Tradeoff:
- Point searches are 3.5x slower than B-tree.

* Our B-tree's performance is comparable to Berkeley DB
[Bender, Farach-Colton, Kuszmaul 06].



COLA Test Specs

Machine:
* Dual Xeon 3.2GHz with 2MiB of L2 Cache.
- 4GiB RAM.

+ Two 2506B Maxtor 7L.250S0 SATA drives.
- Software RAID-0 with 64KiB stripe width.

» Linux 2.6.12-10-amd64-xeon in 64-bit mode.
Input:
+ 64-bit keys and values.



COLA vs. B-Tree: Random Inserts

- The COLA is 1300 times faster than the B-tree

- Expect the B-tree to level off at ~3 orders of
maghitude slower than the COLA.
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COLA vs. B-Tree: Searches

The COLA is 3.5 times slower for searches
- N=230_1
- Keys were inserted in order for the B-tree
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Comparison

* B-tree gives ~100/insertions/second/disk.
* COLA gives ~150,000 insertions/second/disk.

- But point queries are 3.5x slower than B-trees.

* We have a new implementation that:

- handles 20K-30K.

- Point queries are 40% slower than B-trees.
- handles variable-length keys.



Talk outline

* Analytic introduction to the memory hierarchy.
» Description of data structures.
+ Experimental results.

- More data structures.



Shuttle-Tree Overview

- Cache oblivious.

» Fast inserts (O((1/ 8/legleg 7)) og 4N + (log2 N)/B))
- using buffers that are (recursively) shuttle trees.

+ Searches asymptotically match B-trees at
AloggN). (COLA searches are only log,N).)

- using recursive cache-oblivious layout.
* Fast range queries.
- Layout keeps elements (nearly) in order.

« Uses PMA [Bender, Demaine, Farach-Colton 00] to
keep layout dynamically.



Shuttle Tree Uses Buffers For

Fast Inserts

The Shuttle Treeis a CO tree with degree- 9(1)
nodes, where each node has buffers.

- Buffers are also shuttle trees.

Search:
» Walk down tree, looking in buffers.
+ Cost is (buffer searches) + (root-to-leaf path)).



Shuttle Tree Uses Buffers For

Fast Inserts

The Shuttle Treeis a CO tree with degree- 9(1)
nodes, where each node has buffers.

- Buffers are also shuttle trees.

Insert:
» Fill buffer before moving down tree.

» Push buffer size keys down at a time.
»+ Amortize moving down tree against buffer size.



Publications

* Cache-Oblivious Streaming B-Trees (SPAA 07)

- Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman,
Yonatan R. Fogel, Bradley C. Kuszmaul, Jelani Nelson

* Cache-Oblivious String B-trees (PODS 06)
- Michael A. Bender, Martin Farach-Colton, Bradley C. Kuszmaul



What next? Tokutek

*+ We are commercializing this technology through
a startup called Tokutek.

+ We are looking for insert-intensive applications.
+ We are looking for engineers.









Buffer for Fast Inserts:

The Cache-Aware B?-Tree [Brodal, Fagerberg 03]

- Nodes have fanout & and total buffer size 5.

-
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Search:

+ Walk down tree, looking in buffers.
+ Cost is A(buffer search)A) = A(1/&)logeN)




Buffer for Fast Inserts:

The Cache-Aware B?-Tree [Brodal, Fagerberg 03]

- Nodes have fanout & and total buffer size 5.

-
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Inserts:

» Fill buffer before moving down tree.
* Push buffer size = B-“ keys down at a time.
» Cost is A A/ (buffer size)) = A(1/£B)logN)




