
PI: Alok Choudhary, Professor
Director: Center for Ultra-Scale Computing and Security

Electrical Engineering and Computer Science & Kellogg School of Management
Northwestern University

choudhar@ece.northwestern.edu
Co-PIs (M. Kandemir, PSU and R. Thakur, ANL)

Difficult Questions to wkliao@ece.northwestern.edu

Acknowledgements:
DOE SCIDAC program (SDM center), ST-HEC, NGS

Students: Kenin Coloma, Avery Ching, Ramanathan, Berkin, Jianwei Li (Now at
Wallstreet), Ying Liu (now faculty at Chinese Academy of Sciences), Joe
Zambreno (now faculty at Iowa State), Wei-Keng Liao (Research prof at

NWU),
Other Collaborators: Rob Ross (ANL) L Ward (SNL), G. Grider, J. Nunez, J. Bent

(LANL)

Scalable I/O Middleware and File
System Optimizations for High-

Performance Computing (CCF-0621443)

Combustion and energy security

Combustion accounts for 3/4 of energy used in U.S.
manufacturing
Ground transportation accounts for 2/3 of petroleum
usage

Potential for improvement in thermal efficiency
(30%→45%)

Low temperature combustion (LTC) concepts for
automobiles
Savings of 3 million barrels of oil per day (out of
20M)

Design improvements are difficult
Low hanging fruits have already been picked
Advanced concepts require combustion operating
at the edge

Sound scientific understanding is necessary

ACK: Dr. Jackie Chen from Sandia National Labs

Combustion Application using DNS: Extinction
and reignition in a CO/H2 jet flame

Understanding extinction/reignition in
non-premixed combustion is key to
flame stability and emission control
in aircraft and power producing
gas-turbines

Discovered dominant reignition mode is due to
engulfment of product gases, not flame
propagation

Scalar dissipation rate

Burning Extinguished

The largest ever simulations of combustion
have been performed to advance this goal:

− 500 million grid points
− 11 species and 21 reactions
− 16 DOF per grid point
− 512 Cray X1E processors
− 30 TB raw data
− 2.5M hours on IBM SP NERSC (INCITE);

400K hours on Cray X1E (ORNL)

Hawkes, Sankaran, Sutherland, Chen – 2006, DOE INCITE 2005, early user LCF /ORNL 20

S3D parallel performance

•S3D scales with 90% parallel efficiency on 10000 cores on CrayXT3 (ORNL)

Typical Software Layers for I/O in HEC

Based on a lot of current
apps
High-Level

E.g., NetCDF, HDF, ABC
Applications use these

Mid-level
E.g., MPI-IO
Performance experience

Low Level
E.g., File Systems
Critical for performance in
above

Parallel netCDF/HDF/..

Compute node Compute
node

Compute
node

Compute
node

switch
network

I/O
Server

I/O
Server

I/O
Server

MPI-IO

End-to-End Performance critical

Parallel File System

Applications

Client Process Collaboration
Proved to be scalable for parallel I/O

Well-known example: 2-phase I/O adopted in ROMIO

Relying on I/O servers is not scalable
Number of servers is much less than clients
Servers use file locking to maintain file consistency

Locking is not scalable, should be avoided if possible

Servers do not tell if requests from one client are related to
another

Clients collaboration on I/O
Reduce communication link contention on servers
Faster communication among clients
Resolve access conflicts within the group of clients
Rearrange I/O for best underlying file system performance

7

MPI-IO Client-side File Caching
• Goals

– A fully functional, application-aware caching layer in MPI
– Inter-process collaboration for coherence control, file system lock

boundary alignment
– Reduce I/O servers’ workload

• Design
– Global cache metadata management

• Metadata of file blocks are statically distributed in round robin
• A distributed lock management for keeping metadata integrity

– Local cache page management
• Page eviction, migration

– I/O thread
• Enable remote cache data access at the background
• Enable overlapping of computation and I/O

8

I/O Thread
• One thread per MPI process

– Created at the first file open
– Destroyed at the last file close

• Handle local requests
– Keep watching a local mutex

protected shared variable
– Process all I/O related requests,

leaving the main thread alone
• Handle remote requests

– MPI_Iprobe() is used to probe
remote requests

• I/O
– Makes read/write calls to the file

system

file open

read/write

If open first file

If close last file

create thread

no
yes

sh
ar

ed
 v

ar
ia

bl
es

file close

check local
request

probe for
remote request

destroy thread

request
to remote

main
thread

I/O
thread

request
from

remote

9

Design: An Example

page 3
page 2
page 1

1P 2P 3P0P
Cache pages at compute nodes

local memorylocal memory local memorylocal memory

page 3
page 2
page 1

page 3
page 2
page 1

page 3
page 2
page 1
page 2

Al
re

ad
y c

ac
he

d b
y P

2

Logical partitioning view of a file
block 4block 3block 2block 1block 0 block 3

m
et

ad
at

a
lo

ok
up

Distributed metadata
P0

block 8 status
block 4 status
block 0 status

block 9 status
block 5 status
block 1 status

P1

block 10 status
block 6 status
block 2 status

P2

block 11 status
block 7 status
block 3 status

P3

If n
ot

ye
t c

ac
he

d
File system

page 4

Metadata
communication

Cache data
communication

System call

10

Experiment Setup
• Machines

– Tungsten, a Linux cluster @ NCSA running Lustre
• Use 16 I/O nodes, 512 KB stripe size

– Mercury, an IBM cluster @ NCSA running GPFS
• Use default 54 I/O nodes, 512 KB stripe size

• Our implementation is placed in the ADIO layer
of MPICH2-1.0.5

Contact Prof. Wei-Keng Liao for questions
wkliao@ece.northwestern.edu

11

S3D I/O
• S3D -- A parallel turbulent combustion application

developed at Sandia National Laboratories

S3D I/O on GPFS

0

100

200

300

400

500

600

8 16 32 64 128

Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

S3D I/O on Lustre

0

20

40

60

80

100

120

140

160

180

8 16 32 64 128
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c caching

native

12

BTIO
• Block tri-diagonal array partitioning pattern
• Run on Lustre at NCSA’s Tungsten
• Run on GPFS at NCSA’s TeraGrid machine

BTIO 162x162x162 on GPFS

0

100

200

300

400

500

600

16 36 64 100
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

BTIO 162x162x162 on Lustre

0

20

40

60

80

100

120

140

160

16 36 64 100
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

caching
native collective

13

FLASH - I/O
• I/O kernel of the FLASH

application, a block-structured
code developed for the study of
nuclear flashes on neutron stars
and white dwarfs

• I/O method: HDF5
• Each process writes 80 arrays

– Aggregate I/O amount increases as
the number of MPI processes

• I/O pattern
– Non-interleaved writes among

processes

FLASH I/O on GPFS

0

50

100

150

200

250

300

350

400

16 32 64 128

Number of nodes

W
ri
te

 b
an

dw
id

th
 in

 M
B
/s

ec

caching
native

FLASH I/O on Lustre

0

20

40

60

80

100

120

140

160

180

16 32 64 128

Number of nodes

W
ri
te

 b
an

dw
id

th
 in

 M
B
/s

ec

14

Two-stage Write Behind
• A Large Number of application I/O patterns are:

– Write-only
– Non-overlapping (in byte range)

• Two-stage method
– Locally in each process

• Enable write-behind (1st-stage buffering)

– Globally among all processes
• Avoid file system lock conflict (2nd-stage buffering)

– Requirements
• File is opened in write-only mode
• MPI atomic mode must be disabled (default mode in MPI)

15

FLASH I/O and S3D I/O

FLASH I/O on GPFS

0

50

100

150

200

250

300

350

400

450

500

16 32 64 128
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

2-stage independent
native collective

FLASH I/O on Lustre

0

50

100

150

200

250

300

350

400

450

16 32 64 128
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

S3D I/O on GPFS

0

50

100

150

200

250

300

8 16 32 64 128
NUmber of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

S3D I/O on Lustre

0

50

100

150

200

250

300

8 16 32 64 128

Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

16

S3D-IO: Performance + Productivity

17

BTIO
• Native MPI independent write

– Not shown: bandwidth < 5 MB/sec, due
to huge number of requests

• Independent writes with two-stage
write-behind
– Dare to compare with MPI collective

write
– Collective I/O is known to outperform

independent I/O significantly

write amount per request per processWAPRPP:
number of write requests per processNWRPP:

405 B1050001.27 MB40100

Number of write requests per MPI process

810 B1312402.53 MB4064
1080 B1749604.51 MB4036
1620 B26244010.14 MB4016

WAPRPPNWRPPWAPRPPNWRPP
Independent WritesCollective WritesNumber of

processes

BTIO 162x162x162 on GPFS

0

50

100

150

200

250

300

350

16 36 64 100
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

2-stage independent
native collective

BTIO 162x162x162 on Lustre

0

50

100

150

200

250

300

16 36 64 100
Number of nodes

W
ri
te

 b
a
n
d
w

id
th

 i
n
 M

B
/s

e
c

18

S3D-IO on Cray XT3/4
(Performance/Productivity)

• No of files increases linearly with No of
processors

• Managing 10s of thousands of files is a
SDM and productivity nightmare

• Our initial results our encouraging for
scalability, performance and productivity

• Some system software needs to be fixed
for us to experiment on larger systems

19

Execution time for 10 checkpoints

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000
Number of processes

s
e

c
o

n
d

s

one file per proc
single shared file

File open cost

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

Number of processes

s
e

c
o

n
d

s

one file per proc
single shared file

Write bandwidth

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

Number of processes

G
B

/
s
e

c

one file per proc
single shared file

Number of files created

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000

Number of processes

one file per proc
single shared file

S3D-IO: Performance + Productivity

20

Accomplishments
• Thread-based collaborative caching

– RMA based alternative is under development/testing
• Faculty/students funded

– 2/2 (for 2 out of three years, 1 student funded for 1 year)
• Collaborators

– Rob Ross, Rob Latham, Rajeev Thakur @ANL
– Ramanan Sankaran, Scott Klasky @ORNL
– Lee Ward, Jackie Chen@SNL
– IIT (HECURA project) provided with caching software for server-

push I/O
• Issues/needs: Most important: Access to larger machines

and getting the vendors to fix software when requested,
incorporation of our S/W in production S/W etc.

21

Publications
Published:
• Wei-keng Liao, Kenin Coloma, Alok Choudhary, and Lee Ward. Cooperative

Client-side File Caching for MPI Applications. In the International Journal of
High Performance Computing Applications , Volume 21, Number 2, pp. 144-
154, May 2007.

• Wei-keng Liao, Avery Ching, Kenin Coloma, Alok Choudhary, and Lee Ward. An
Implementation and Evaluation of Client-side File Caching for MPI-IO. In the
Proceedings of the 21st International Parallel and Distributed Processing
Symposium, Long Beach, California, March 2007.

Accepted:
• Avery Ching, Robert Ross, Wei-keng Liao, Lee Ward, and Alok Choudhary.

Noncontiguous locking techniques for parallel file systems. In Proceedings of
Supercomputing, November 2007 (to appear).

• Wei-keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choudhary,
Jacqueline Chen, Ramanan Sankaran, and Scott Klanksy. Using MPI file caching
to improve parallel write performance for large-scale scientific applications. In
Proceedings of Supercomputing, November 2007 (to appear).

