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Project Theme: Coordination

e Between task scheduling and parallel I/O

— Flexible I/O for ultra-scale parallel sequence search
[SC|08, PPoPPO08 poster]

o Between parallel file system and batch job scheduler

— Online job input data recovery by parallel file system
[SC|07, ICPPO08]

— Temporal replication of job input data (in submission)

e Between levels in multi-layer storage systems

— Novel cross-layer coordination mechanism for existing
prefetching algorithms [ICDCSO08]



Motivation

e Cache management important in multi-level

server systems %ﬂ
— Prefetching more profitable, especially at 7=

lower levels [Liang07] T

L1 buffer cache

o Prefetching policies at individual levels not

coordinated
— Limitations of prefetching algorithms

compounded L2 buffer cache
e \Wasted disk I/0O bandwidth and cache
)
space ‘

e Failure to utilize lower-level cache space



Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

e Independent prefetching example:

— L1 cache space of 10 blocks; L2 cache space of 5 blocks,
managed w. LRU

— Prefetching depth increasing by 1 at each sequential access

L1

L2




Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

1

e Independent prefetching example:
— Blocks 1 ~ 4 fetched from L2 to L1
— Blocks 1 ~ 8 fetched from disk to L2

L1
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Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

1

e Independent prefetching example:
— Block 5 evicted from L2 to make space for random blocks
— Block 5 needed by L1 in next accesses

R|R L2
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Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

e Independent prefetching example:
— Sequential stream ending at block 6
— Blocks 7 ~ 12 fetched unnecessarily to L1; 13 ~ 24 for L2

L2
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Observations

e Compounding of aggressiveness
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e New multi-level prefetching algorithm?
— High complexity, poor portability and reusability
e PFC: PreFetching Coordinator [ICDCS08]
— “Extension cord” between levels using existing algorithms



PFC in Multi-level Storage Systems

e Hierarchy-aware local optimization @usts L2 prefetch@

aggressiveness
L1 node
Intercepts L1

L1 cache requests &

management & |||\ monitors L1 pattern
prefetching

@) | management
& prefetching

L2 buffer
L1 buffer cache D
cache ~
110 scheduler)“ Disk
Monitors L2 ___
cache status J

e Highly modular and reusable
— No L1 modification. No I/O interface change.

— No application hints or information on access pattern or algorithms

e Easy to extend
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PFC Actions

e Readmore
— Speeds up L2 prefetching
e Appends additional blocks to original L1 requests

e Bypass
— Slows down L2 prefetching
e Bypasses L2 cache
e Interacts directly with L2 I/O scheduler
— Side product: exclusive caching

e Avoids caching sequentially accessed blocks in both L2
and L1
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Key Data Structures and Parameters

e Bypass and readmore queues
— Help PFC dynamically control bypass/readmore levels
e Parameters

e PFC Algorithms
— Manage queues
— Invoke actions
— Dynamically adjust parameters
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Example: Bypass and Readmore Actions

Readmore_length = bypass _length = rm_size = 3

Request
from L1 12 |3 ]4]5

To make L2 more
aggressive

PFC 112 |3 |45

Readmore blocks

SUSIESEAENENEN (s Lo

to L2 Readmore queue
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Example: Bypass and Readmore Actions

Readmore_length = bypass _length = rm_size = 3

To make L2
more aggressive

Request 1
from L1

2 |3 |4

1 |2

3

4

s | I

Readmore blocks

Request| 1 | 2

to L2

4

PFC

Request
to L2

PFC

2

o TeTT e |
b
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To make L2 less
aggressive

1

2 |3 4

Bypass blocks

4

5

Bypass queue




Adaptive PFC Parameter Configuration

e Autonomic tuning of readmore/bypass parameters by monitoring
— Higher level access pattern
— Lower level cache status

Observation

Large L1
request size

Diagnosis

Aggressive L1 prefetch

L2 well stocked
or
L2 & readmore miss

Aggressive or ineffective
|2 prefetch

Bypass miss

Reaccess rate low or
L1 space sufficient

L2 miss but
bypass hit

Reaccess rate high &
L1 space insufficient

L2 miss but
readmore hit

L2 prefetch
too conservative
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Action

Increase readmore level

- -

Decrease readmore level

Increase bypass level

Decrease bypass level




Experiments and Results Overview
e Simulator [Zhou 01, Zhu 04, Chen 05]
e Disksim [Ganger99]
e Four existing prefetching algorithms
— 4-block-readahead [Smith 82], Linux, SARC [Gill 05], AMP [Gill 07]
e Three access traces
— SPC OLTP, SPC Web, Multi-application
e 2 L1 cache size settings
— L: 1% trace footprint, H: 5% trace footprint
e 4 L2/L1 cache size settings
— 200%, 100%, 10%, 5%

e PFC Improves response time in all 96 cases
— Avg. improvement: 14.6%, max: 35%
— Dynamically adjusting aggressiveness control

— In majority of cases, full PFC performs better than readmore or bypass
alone
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SPC Web Trace Results
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Conclusion

e Observations
— Algorithm- and access-pattern-blind cross-level coordination
possible
— No existing prefetching algorithm consistently outperform others
when applied to multi-level systems
— Lower-level cache hit rate or wasted prefetch do not correlate
well with response time

e Future work
— Applying to multi-level prefetching in parallel file systems
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Major Contributions

— Novel cross-layer coordination mechanism for existing
prefetching algorithms [ICDCSO08]

— Evaluation using
— four well-known prefetching algorithms
— traces with different access patterns
— diverse cache settings

Presentation Roadmap

— PFC architecture and algorithms
— Performance evaluation
— Conclusion
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Background — Prefetching

e Prefetching:
— Exploiting spatial locality of applications [Callahan 91, Metcalf 93]
— Sequential prefetching most commonly used

e Dynamic prefetching: aggressiveness dependent on
sequential confirmations

e Representative prefetching algorithms
— N-block-readahead (RA): fixed prefetching degree [Smith 82]
— Linux: exponentially growing aggressiveness

— SARC: fixed aggressiveness; intelligent management of space
[Gill 05]

— AMP: aggressiveness adaptive to both sequentiality and space
limit [Gill 07]
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Background — Multi-level Cache Management

e Multi-level cache management architecture:

%}j\ e Multi-level demand paging:
= well studied

T' « demand paging — Aggressively-collaborative

L1 buffer cache [¢---> « prefetching [Wong 02, Gill 08]
t * deferred writing — Hierarchical-aware [Zhou 01]
— Local optimizations [Chen
05]
» demand paging

L2 buffer cache <----> . derf)::s;c\rl]vlrri]tgijng e Multi-level

I prefetching/deferred writing:

unstudied



Response time (S)
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Average L2 Cache Hit Ratio
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Web Trace Results
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