Coordinating Existing Prefetching
Strategies for Multi-level Storage
Systems

Zhe Zhang (NCSU)
Kyuhyung Lee (UIUC)
Xiaosong Ma (NCSU/ORNL)
Yuanyuan Zhou (UIUC)

FSIO Workshop 2008

(HECURA) o
e o,

URIVERSITY OF ILLINODIS AT URBANA-CHAMPAIGN

Project Theme: Coordination

e Between task scheduling and parallel I/O

— Flexible I/O for ultra-scale parallel sequence search
[SC|08, PPoPPO08 poster]

o Between parallel file system and batch job scheduler

— Online job input data recovery by parallel file system
[SC|07, ICPPO08]

— Temporal replication of job input data (in submission)

e Between levels in multi-layer storage systems

— Novel cross-layer coordination mechanism for existing
prefetching algorithms [ICDCSO08]

Motivation

e Cache management important in multi-level

server systems %ﬂ
— Prefetching more profitable, especially at 7=

lower levels [Liang07] T

L1 buffer cache

o Prefetching policies at individual levels not

coordinated
— Limitations of prefetching algorithms

compounded L2 buffer cache
e \Wasted disk I/0O bandwidth and cache
)
space ‘

e Failure to utilize lower-level cache space

Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

e Independent prefetching example:

— L1 cache space of 10 blocks; L2 cache space of 5 blocks,
managed w. LRU

— Prefetching depth increasing by 1 at each sequential access

L1

L2

Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

1

e Independent prefetching example:
— Blocks 1 ~ 4 fetched from L2 to L1
— Blocks 1 ~ 8 fetched from disk to L2

L1

afslef7[s] L2
5

Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

1

e Independent prefetching example:
— Block 5 evicted from L2 to make space for random blocks
— Block 5 needed by L1 in next accesses

R|R L2

ol7ls]
6

Example: Problem of Uncoordinated Prefetching

e Sample access pattern:
— Mixed sequential and random accesses
— Sequential stream ends at block 6

e Independent prefetching example:
— Sequential stream ending at block 6
— Blocks 7 ~ 12 fetched unnecessarily to L1; 13 ~ 24 for L2

L2

=Irls[e]7]8]o]rw0fulz] L
4

Observations

e Compounding of aggressiveness

1

3
3
o s

3
ot G

e New multi-level prefetching algorithm?
— High complexity, poor portability and reusability
e PFC: PreFetching Coordinator [ICDCS08]
— “Extension cord” between levels using existing algorithms

PFC in Multi-level Storage Systems

e Hierarchy-aware local optimization @usts L2 prefetch@

aggressiveness
L1 node
Intercepts L1

L1 cache requests &

management & |||\ monitors L1 pattern
prefetching

@) | management
& prefetching

L2 buffer
L1 buffer cache D
cache ~
110 scheduler)“ Disk
Monitors L2 ___
cache status J

e Highly modular and reusable
— No L1 modification. No I/O interface change.

— No application hints or information on access pattern or algorithms

e Easy to extend
9

PFC Actions

e Readmore
— Speeds up L2 prefetching
e Appends additional blocks to original L1 requests

e Bypass
— Slows down L2 prefetching
e Bypasses L2 cache
e Interacts directly with L2 I/O scheduler
— Side product: exclusive caching

e Avoids caching sequentially accessed blocks in both L2
and L1

10

Key Data Structures and Parameters

e Bypass and readmore queues
— Help PFC dynamically control bypass/readmore levels
e Parameters

e PFC Algorithms
— Manage queues
— Invoke actions
— Dynamically adjust parameters

11

Example: Bypass and Readmore Actions

Readmore_length = bypass _length = rm_size = 3

Request
from L1 12 |3]4]5

To make L2 more
aggressive

PFC 112 |3 |45

Readmore blocks

SUSIESEAENENEN (s Lo

to L2 Readmore queue

12

PF

Example: Bypass and Readmore Actions

Readmore_length = bypass _length = rm_size = 3

To make L2
more aggressive

Request 1
from L1

2 |3 |4

1 |2

3

4

s | I

Readmore blocks

Request| 1 | 2

to L2

4

PFC

Request
to L2

PFC

2

o TeTT e |
b
13

To make L2 less
aggressive

1

2 |3 4

Bypass blocks

4

5

Bypass queue

Adaptive PFC Parameter Configuration

e Autonomic tuning of readmore/bypass parameters by monitoring
— Higher level access pattern
— Lower level cache status

Observation

Large L1
request size

Diagnosis

Aggressive L1 prefetch

L2 well stocked
or
L2 & readmore miss

Aggressive or ineffective
|2 prefetch

Bypass miss

Reaccess rate low or
L1 space sufficient

L2 miss but
bypass hit

Reaccess rate high &
L1 space insufficient

L2 miss but
readmore hit

L2 prefetch
too conservative

14

Action

Increase readmore level

- -

Decrease readmore level

Increase bypass level

Decrease bypass level

Experiments and Results Overview
e Simulator [Zhou 01, Zhu 04, Chen 05]
e Disksim [Ganger99]
e Four existing prefetching algorithms
— 4-block-readahead [Smith 82], Linux, SARC [Gill 05], AMP [Gill 07]
e Three access traces
— SPC OLTP, SPC Web, Multi-application
e 2 L1 cache size settings
— L: 1% trace footprint, H: 5% trace footprint
e 4 L2/L1 cache size settings
— 200%, 100%, 10%, 5%

e PFC Improves response time in all 96 cases
— Avg. improvement: 14.6%, max: 35%
— Dynamically adjusting aggressiveness control

— In majority of cases, full PFC performs better than readmore or bypass
alone

15

SPC Web Trace Results

1.2
lﬂrlglnal
] 200% 5%
BPFC
~
0 0.8 -
N
@
&
‘= 06
@
n
S 04
o
n
)
o 02
AMP SARC RA Linux AMP SARC RA Linux

Algorithm — L2/L1 cache size ratio

Unused prefetch (# blocks)

16

90000 -

80000

70000 -

60000 -

50000 -

40000 -

30000 -

20000

10000

=

®m Original
200% 5%
B PFC
AMP SARC RA Linux AMP SARC RA Linux

Algorithm — L2/L1 cache size ratio

Conclusion

e Observations
— Algorithm- and access-pattern-blind cross-level coordination
possible
— No existing prefetching algorithm consistently outperform others
when applied to multi-level systems
— Lower-level cache hit rate or wasted prefetch do not correlate
well with response time

e Future work
— Applying to multi-level prefetching in parallel file systems

17

References

[ChenO05]: “Empirical Evaluation of Multi-level Buffer Cache Collaboration for Storage Systems” by
Z. Chen, Y. Zhang, Y. Zhou, H. Scott and B. Schiefer, in SIGMETRICS 2005

[GIillO5]: “SARC: Sequential Prefetching in Adaptive Replacement Cache”, by B. Gill and D. Modha,
in FAST 2005

[GillO7]: “AMP: Adaptive Multi-stream Prefetching in a Shared Cache” by B. Gill and L. Bathen, in
FAST 2007

[GillO8]: “On Multi-level Exclusive Caching: Offline Optimality and Why Promotions Are Better Than
Demotions” by B. Gill, in FAST 2008

[Liang08]: “Step: Sequentiality and Thrashing Detection Based Prefetching to Improve
Performance of Networked Storage Servers” by S. Liang, S. Jiang, and X. Zhang, in ICDCS 2007.

[Smith82]: “Cache Memories” by A. Smith, in ACM Computing Surveys (CSUR) 1982

[Wong02]: “My Cache or Yours? Making Storage More Exclusive” by T. Wong and J. Wilkes, in
USENIX 2002

[ZhouO1]: “The Multi-Queue Replacement Algorithm for Second Level Buffer Caches” by Y. Zhou
and J. F. Philbin and K. Li, in USENIX 2001

[ICDCSO08]: “PFC: Transparent Optimization of Existing Prefetching Strategies for Multi-level
Storage Systems” by Z. Zhang, K. Lee, X. Ma, and Y. Zhou, in ICDCS 2008.

[SCO08]: “Massively Parallel Genomic Sequence Search on the BlueGene/P Architecture”, by H.
Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. Feng, in SC 2008.

[ICPPO08]: “On-the-fly Recovery of Job Input Data in Supercomputers”, by C. Wang, Z. Zhang, S.
Vazhkudai, X. Ma and F. Mueller, in ICPP 2008.

[PPOPPO08 Poster]:” Semantics-based distributed I/O for mpiBLAST”, P. Balaji, W. Feng,J.
Archuleta, H. Lin, R. Kettimuthu, R. Thakur, X. Ma, poster, PPoPP 2008.

18

Major Contributions

— Novel cross-layer coordination mechanism for existing
prefetching algorithms [ICDCSO08]

— Evaluation using
— four well-known prefetching algorithms
— traces with different access patterns
— diverse cache settings

Presentation Roadmap

— PFC architecture and algorithms
— Performance evaluation
— Conclusion

19

Background — Prefetching

e Prefetching:
— Exploiting spatial locality of applications [Callahan 91, Metcalf 93]
— Sequential prefetching most commonly used

e Dynamic prefetching: aggressiveness dependent on
sequential confirmations

e Representative prefetching algorithms
— N-block-readahead (RA): fixed prefetching degree [Smith 82]
— Linux: exponentially growing aggressiveness

— SARC: fixed aggressiveness; intelligent management of space
[Gill 05]

— AMP: aggressiveness adaptive to both sequentiality and space
limit [Gill 07]

20

Background — Multi-level Cache Management

e Multi-level cache management architecture:

%}j\ e Multi-level demand paging:
= well studied

T' « demand paging — Aggressively-collaborative

L1 buffer cache [¢---> « prefetching [Wong 02, Gill 08]
t * deferred writing — Hierarchical-aware [Zhou 01]
— Local optimizations [Chen
05]
» demand paging

L2 buffer cache <----> . derf)::s;c\rl]vlrri]tgijng e Multi-level

I prefetching/deferred writing:

unstudied

Response time (S)

0.9

0.8

0.7

0.6

0.5

0.

f =9

0.

L

u+

ha

0.

-

=

SPC OLTP Trace Results

200% 5%

IUrlglnal

' mPFC

AMP SARC RA Linux AMP SARC RA Linux

Algorithm — L2/L1 cache size ratio

40000 -

200% 5%
—~ 35000 -
Y,

2 Ori

O 30000 ~ mOriginal |
© mPFC
2 25000 -
3+
N—”
<
o 20000
s
)
© 15000 -
S
o
- 10000
m J
%)
> 5000 J
c
= .Jl._ll 1 |

AMP SARC RA Linux AMP SARC RA Linux

Algorithm — L2/L1 cache size ratio

22

Average L2 Cache Hit Ratio

100

@ Original BPFC ‘

90

80
70

9))
o

o

L2 Hit Ratio (%)
W £ o
o o

= M
o O

AMPSARC RA Linux AMPSARC RA Linux AMPSARC RA Linux AMPSARC

PFC may decrease L2 hit ratio, while improves overall performance.

23

OLT

1.2

o

ge response time
=] f=1]
=4

ke

Avera
[=]
b

0

[

Lz = 200% L1

[
|‘\ I “\ L ||I |

AMP SARC RA Linux

AMP

Unused prefetch

le+06
0
o
L
5
o ie+0d
B
o 4096
|
B
w512
il
b
£y
- 64
0
3
£ B
=

L2 = 200% L1

il

AMP SARC

Linux

SARC

L2 = Ll

SARC

P Trace Results
Average response time:

Rﬂ Llnux

RA

Linux

24

L2 = 10% Ll
||| ||\ ‘II | =
AMP SARC BA Linux
L2 = 10% L1
"AMP SARC RA Linux

IOriginall-
DU -
PFC I |

LZ = 5% Ll

h

SARC Linux

Iﬂriginall.
D) -
FFC

L2 = 5% L1

SARC RA Linux

Web Trace Results
Average response time:

[=

onse time
(=]

ge_resp

hvera
[}

Unused prefetch:

le+

Unused prefetched blocks

= o o

3%

u L

08

Je+04

4096

512

(=21
.

L2 =

AMP SARC

L2 =

AMP SARC

200% L1

RA Linux

200% L1

RA Linux

i

= L2 = 10% L1

AMP SARC RA Linux AMF SARC

AMP SARC RA Linux AMP SARC

25

RA Linux

RA Linux

-Driginali;j.
DU .
PFCIII

L2 = 5% Ll

AMP Linux

Originall
DU .
PFC IE

L2 = 5% L1

AMP SARC RA Linux

Multi unused prefetch

tched blocks

3e+04

=%
=]
w
(=]

512

Unused prefe
oh
=3

8

1

ed blocks

Y
=]
W
(=]

512

Unused prefetch
oh
=4

3e+07

le+06

le+06

3e+04}

LiE

Original 1
DUIII_
PFC
L2 = 200% L1 L2 = L2 = 10% L1 L2 = 5% L1
AMP SARC RA Linux AMP SARC RA Linux AMP SARC RA Linux AMP SARC RA Linux
Web unused prefetch
Original 1
DU .
PFC B
L2 = 200% L1 L2 = L2 = 10% L1 L2 = 5% L1 I
AMP SARC RA Linux AMP SARC RA AMP SARC RA Linux AMP SARC RA Linux

8]
(5]

¥

ge response time
[
- ” N

Avera
=

L]

Ln

L=
.
=]

e response time
g = p o=
L] L]
. o

Avera
=]
(%]

Multi avg response time

Original 1
DU e
PFC BN .
L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1
AMP SARC RA Linux AMP SARC RA Linux AMP SARC RA Linux SARC RA Linux
Web avg response time
Original 1
DU e
PFC I
L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1]

i III

SARC RA Linux AMP SARC RA Linué7 AMP SARC RA Linux SARC RA Linux

	Coordinating Existing Prefetching Strategies for Multi-level Storage Systems
	Project Theme: Coordination
	Motivation
	Example: Problem of Uncoordinated Prefetching
	Example: Problem of Uncoordinated Prefetching
	Example: Problem of Uncoordinated Prefetching
	Example: Problem of Uncoordinated Prefetching
	Observations
	PFC in Multi-level Storage Systems
	PFC Actions
	Key Data Structures and Parameters
	Example: Bypass and Readmore Actions
	Example: Bypass and Readmore Actions
	Adaptive PFC Parameter Configuration
	Experiments and Results Overview
	SPC Web Trace Results
	Conclusion
	Slide Number 18
	Slide Number 19
	Background – Prefetching
	Background – Multi-level Cache Management
	SPC OLTP Trace Results
	Average L2 Cache Hit Ratio
	OLTP Trace Results
	Web Trace Results
	Slide Number 26
	Slide Number 27

