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Data Doubles Every Year

Computing power doubles every 18
months (Moore’s Law) ...
* 100xin 10 years

|/0 bandwidth increases ~10% / year

* <3xin 10 years.

Data doubles every year ...
* 1000x in 10 years, and 1,000,000x in 20 yrs.

— NCSA Example:
* First19years: 1PB
e Year20(2007): 2 PB
e Year21(2008): 4 PB
e By2020: ~20 Exabytes ?

As our data volumes grow, especially in the
sciences (where scientific funding for
research barely grows at all), we will fall
farther and farther behind in our ability to
analyze, assimilate, and extract knowledge
from our data collections ... unless we
develop and apply exponentially more
powerful algorithms and methods.
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Astroinformatics

Example Application: The LSST Project
Informatics Use Cases in Astronomy
Challenge Area: Distributed Data Mining
Summary



e Astroinformatics





http://www.sciencecartoonsplus.com/contact.htm�

Past: 100’s to 1000’s of independent distributed
heterogeneous data / metadata / information
repositories.

Today: Astronomical data are now accessible
uniformly from federated distributed heterogeneous
sources = the Virtual Observatory.

Future: Astronomy is and will become even more

data-intensive in the coming decade with the growth
of massive data-producing sky surveys.

Challenge: It will be prohibitively difficult to
transport the data to the user application. Therefore




* Astronomy has always been a data-driven science

e |tis now a data-intensive science: welcome to
Astroinformatics !

— Data-oriented Astronomical Research =

— Scientific KDD (Knowledge Discovery in Databases):
» Characterize the known (clustering, unsupervised learning)
« Assign the new (classification, supervised learning)
» Discover the unknown (outlier detection, semi-supervised learning)

S Scientific Knowledge |

* Benefits of very large datasets:
» best statistical analysis of “typical” events
» automated search for “rare” events



To avoid biases caused by limited samples, astronomers
now study the sky systematically = Sky Surveys

Surveys are used to measure and collect data from all
objects that are contained in large regions of the sky, in a
systematic, controlled, repeatable fashion.

These surveys include (... this is just a subset):
— MACHO and related surveys for dark matter objects: ~ 1 Terabyte
— Digitized Palomar Sky Survey: 3 Terabytes
— 2MASS (2-Micron All-Sky Survey): 10 Terabytes
— GALEX (ultraviolet all-sky survey): 30 Terabytes
— Sloan Digital Sky Survey (1/4 of the sky): 40 Terabytes
— and this one is just starting: Pan-STARRS: 40 Petabytes!

Leading up to the big survey next decade:
— LSST (Large Synoptic Survey Telescope): 100 Petabytes!




As our chemistry friends say ....

l— If you're not
/A part of the

) solution,
you're part of the
precipitate!
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Astroinformatics

Example Application: The LSST Project
Informatics Use Cases in Astronomy
Challenge Area: Distributed Data Mining
Summary



(mirror funded by private donors)
| SST = 8.4-meter diameter
primary mirror =
Large 10 square degrees!
Synoptic
Survey
Telescope

http://www.lsst.org/

(design, construction, and operations of telescope, observatory, and data system: NSF) (camera: DOE)


http://www.lsst.org/�

LSST Key Science Drivers: Mapping the Universe

— Solar System Map (moving objects, NEOs, asteroids: census & tracking)

— Nature of Dark Energy (distant supernovae, weak lensing, cosmology)

— Optical transients (of all kinds, with alert notifications within 60 seconds)

— Galactic Structure (proper motions, stellar populations, star streams, dark matter)

I

L B it JAntofaigasta

.__..-."- AEATIL . . 'I:.: pIEF.:-l =

| -— o La Serepa, !A Fge

Valparaizo, N sakad
Santiago +Pancagu

LSST in time and space:
—When? 2016-2026 odel @
—Where? Cerro Pachon, Chile DSeVa




Observing Strategy: One pair of images every 40 seconds for each spot on the sky,
then continue across the sky continuously every night for 10 years (2016-2026), with
time domain sampling in log(time) intervals (to capture dynamic range of transients).

« LSST (Large Synoptic Survey Telescope):
— Ten-year time series imaging of the night sky — mapping the Universe !
— 100,000 events each night — anything that goes bump in the night !
— Cosmic Cinematography! The New Sky! @ http://www.lsst.org/

Education and Public Outreach
have been an integral and key
feature of the project since the
beginning — the EPO program
Includes formal Ed, informal Ed,
Citizen Science projects, and
Science Centers / Planetaria.




Camera Specs: (pending funding from the DOE)

201 CCDs @ 4096x4096 pixels each!

= 3 Gigapixels = 6 GB per image, covering 10 sg.degrees
= ~3000 times the area of one Hubble Telescope image

Obtain one 6-GB sky image in 15 seconds
Process that image in 5 seconds

Obtain & process another co-located image for science validation
within 20° (= 15-second exposure + 5-second processing & slew)

Process the 100 million sources in each image pair, catalog all
sources, and generate worldwide alerts within 60 seconds (e.g.,
iIncoming Killer asteroid)

Generate 100,000 alerts per night (VOEvent messages)
Obtain 2000 images per night .
Produce ~30 Terabytes per night
Move the data from South America to US daily
Repeat this every day for 10 years (2016-2026)
Provide rapid DB access to worldwide community:
— 100-200 Petabyte image archive
— 20-40 Petabyte database catalog







http:

MANAGING AND MINING THE LSST DATA SETS

Astronomy is undergoing an exciting revolution -- a revolution in the way we
probe the universe and the way we answer fundamental questions. New
technology enables this: novel detectors are opening new windows on the
universe, creating unprecedented volumes of high quality data, and computing
technology is keeping up with this explosion. In turn, this is driving a shift in the
way science is produced in astronomy and astrophysics: huge surveys of the sky
over wide wavelengths can be analyzed statistically for low-level correlations and
inverse problems may be solved by statistical inversion, producing new
understanding of the underlying physics.

This parallels progress in high energy physics. Decades ago, a handful of
photographs of events sufficed for ground-breaking discoveries. This gave way
to experiments in which the systematic measuring (scanning) of many bubble
chamber pictures allowed the measurement of statistical properties, such as
lifetimes. Current experiments extend the technique by recording all events
electronically and subjecting Petabyte data sets to rigorous statistical analysis.

A Kkey ingredient in mining our astronomical science from such huge databases,
efficient algorithms for statistical analysis, has been under-emphasized in the
rush to utilize new technology and get the data products out to the science
community. Past data sets in astronomy (and indeed in most areas of science)
have been small enough that one individual could visualize the data and discover
unanticipated correlations. This is often how major discoveries have been made.
Data sets are now becoming sufficiently large that this is less possible -- even
prescribed processing of the data to test a hypothesis is becoming challenging.
In the near future, analysis of Petabyte databases will require the solution of this
problem.

New Horizons

It is worthwhile to briefly review this sea-change in the way astronomers produce
science. A giant departure from the tradition of one astronomer and one modest
data set per project has been the Sloan Digital Sky Survey: a 15TB imaging data
set covering multiple wavelengths and up to 10,000 square degrees of the sky
(http:/iwww.sdss.org/). Nearly 100 Co-Is will mine these data in prescribed ways.
Current plans do not include mining the 15TB. Rather, 1TB of catalogs of
detected objects and another 2TB of their “cutout” pictures will be produced and
mined. Nevertheless, this will surely result in new understanding of our universe.
Imagine what might be discovered if the full 15TB could be explored efficiently!
Another refreshing and very successful departure from tradition is the 2MASS
infrared survey of the sky (http://irsa.ipac.caltech.edu). This group has poured
major effort into usability of the data products and efficient remote searching.

universe.ucdavis.edu/docs/data-challenge.pdf

A New Collaboration

We see this research program attracting a broad range of mathematical,
computer and physical scientists. In addition to the obvious connections to
astronomy, statistics and large-scale computation, this program would also
include probability, data visualization and data management. We would also seek
to include representatives from the high-energy physics community, who have
faced somewhat different problems involving massive data sets and immense
data streams for many years now. Some representation from theoretical
cosmologists who simulate universes would add to the mix and allow the
question of comparing simulated universes to the actual universe to be more
profitably addressed.

It will be particularly useful to study the characteristics of spatial processes, since
it nicely combines the central computational and statistical challenges. Very little
work has been done to date in this area, although a recent paper by Moore et al.
(2001) recognizes the importance of this problem and describes an algorithm for
computing estimates of higher order correlation functions that, for sufficiently
large data sets, is much more efficient than the obvious approach.

We need not simply a theoretical study of how massive astronomical data sets
should be analyzed, but major efforts to analyze the most recently available data
sets. Data from the Sloan Digital Sky Survey should be publicly available by
2003. It will be useful to work with this database in new ways, searching for low-
level correlations. Deeper imaging surveys, such as the Deep Lens Survey, are
producing imaging data and catalogs nearly to the depth that LSST will reach,
but over a very small area of sky by comparison to a decade of LSST operations.
Such surveys are precursors to LSST and their data products will prove to
valuable sand boxes for development of new algorithms.

A common technique in modern high-energy physics experiments is the “mock
data challenge.” The data stream, from detector, through data acquisition and
processing, to final science analysis, is simulated at the appropriate level of
detail. This allows a final acceptance testing of all data systems to be completed
along with the hardware, so that full-up science operations can begin on a much
better schedule, with good diagnostics in place. For the science, these studies
are just as important. Analysis teams combing for subtle effects can, in then end,
compare their result (and error estimate) with the “true” values of parameters that
were in the simulation. Often, a sample of “real” data is used to get the
background distribution of events correct. Using catalogs from the SDSS and the
Deep Lens Survey as a basis for the mock data challenge for the LSST will make
it more effective.
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XLDB = eXtremely Large Databases
Since 2007: 3 XLDB Workshops and 1 working meeting

XLDB4 conference:

— October 5-7, 2010 at Stanford/SLAC
— Expect ~200 attendees

The result is a new design for petabyte-scale scientific
databases = SciDB

— SciDB is based on the new array-based data model

— Relational data model (RDBMS) is so “last century”

References:

— XLDB: http://xldb.org
— SciDB: http://scidb.org



http://xldb.org/�
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Informatics Use Cases in Astronomy
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Summary



 The clustering problem:

— What is the significance of the clusters (statistically
and scientifically)?

— What is the optimal algorithm for finding friends-of-
friends or nearest neighbors?
« N is >10%9 so what is the most efficient way to sort?
 Number of dimensions ~ 1000 — therefore, we have an
enormous subspace search problem
— Are there pair-wise (2-point) or higher-order (N-way)
correlations?

« Nis >10%9 so what is the most efficient way to do an N-point
correlation?

— algorithms that scale as N2logN won’t get us there



e Qutlier detection: (unknown unknowns)

— These may be real scientific discoveries or garbage

— Oultlier detection is therefore useful for:
* Novelty Discovery — is my Nobel prize waiting?
« Anomaly Detection — Is the detector system working?
o Data Quality Assurance — is the data pipeline working?

— How does one optimally find outliers in 103-D
parameter space? or in interesting subspaces (in
lower dimensions)?

— How do we measure their “interestingness”?



« The dimension reduction problem:

— Number of attributes can be
hundreds or thousands

— Are there combinations
(linear or non-linear
functions) of observational
parameters that correlate
strongly with one another?

— Are there eigenvectors or
condensed representations
(e.qg., basis sets) that
represent the full set of
properties?




 The superposition / decomposition problem:
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— What if there are 10%° objects that overlap in a 103-D
parameter space?

— What is the optimal way to separate and extract the
different unique classes of objects?

— How are constraints applied (as in operations research
or linear programming)?



 The optimization problem:

— Finding the optimal (best-fit, global maximum
likelihood) solution to complex multivariate
functions over very high-dimensional spaces




e Find the optimal simultaneous solution for 20,000,000,000 objects’
shapes across 2000 image planes, each of which has 201x4096x4096
pixels ... 10?3 floating-point operations!

— This illustrates an example for just one such object:

Actual Galaxy Shape Individual Exposure P5Fs Expected Galaxy Shape

‘same in all axposuras (datermined from stars (usad to compute likelihood

References:
http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf
http://code.google.com/p/multifit/
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universe.ucdavis.edu/docs/LSS

LSST Petascale Data R&D Challenges

Achieving scalability and reliability in LSST computing, storage, and network resources

The design of the DM system architecture is influenced by the techrology. We expect to be availzble
to implement it, szarting with construction in 2011 - 2014 and continuing through the principal survey
period until 2024, This technology includes not only more powerful components, but complesely new
system  architectures and potentizly disruptive technologies.  Mest computing  throughput
mprovemnents will come not from increased CPU cdlock speeds as in the past, but from larger
concentrations of CPUs/cores and advanced computing architectures, Solid state technology may
change storage and the way we physically organize data. Hardware failures will b2 routine for the
LSST data system due to the large number of CPUs and disk drives, and reliance on high-speed
nebwork conmectivity, It is 2 challenge to create a system sufficiently robust to these failures, We
need o predict the characteristics of CPU, network, storage hardware, and system softwars
sufficiently well that our design is appropriate, Further, we need to insulate the design as much as
possibie from underlying platform dapendencies.

Reliability and performance issues for very large databasas

LS5T's mzin dzta products from the 20,000 sguare degree survey with 2000 images over ten years
per patch of sky are in the form of relational database tables. These tables are very large (50 billion
rows in the Object table, 600 billion rows in the Source table). They must be esxtensible, and
partitioned  and indexed to facilitate high query performance, and replicated across
mulzipe centars. Queries in the time domain (Scurce table) are likely to be of equal importance to
those in the spatial domain, Since these are traditionally optimized by different database
organizations, it is unclear what choices will perform best for LSST. Some intensive applications wil
nvohee n-point correlations of object attributes owver all objects. All these factors suggest that
database performance and relizbility are risk arsas.

Efficient automated data quality assessment

LSST will preduce large wvolumes of science data, The Data Management System [DMS) produces
derived products for scientific use both during observing (i.e. alerts and supporting image and source
data) and in daily and periodic reprocessing, The periodic reprocessing also results in released scienca
products, Analysis of the nightly data will slso provide insight into the heslth of the telescopefcamera
system. An automated data quality assessment systemn must be developed, which efficent’y searches
for cutliers in raw image data and unusual correlations, This will imvolve aspects of machine lzaming,

Operational control and menitoring of the DMS

The DMS will be 2 complex distributed system with enormous dazzflows that operates 24/7,  The
DMS must be continususly manizored and controlled to ensure the proper functioning of all computing
hardware, network connections, and software, induding the datz gualty of the sdence
pipelines. Most of the monitering tasks, and some of the contred tasks, must be highly automated,
since the data volumes praclude human examination of zll but 2 tiny fraction of the daa.

Achieving acceptably low False Transient Alert Rate

The science mission places high demand on the LSST's ability to rapicly and accurate’y detect and
classify varying and transient cojects and w0 achieve a low false alarmm rate.  Given the very b gl' datz
volume produced by the LSST, the correspanding large number of detections in each image {up to
one million objects detected per image), as well as the likelihood of entirely new classes of transients,
the LSST will not be able o rely an traditional lzbor-intensive validation of detections, dassifications,
and alerts. To achieve the levels of accuracy required, new algorithms for detection and dlassfication
miust be crezted, 2s well 25 innovative automates techniques for zlert filtering and validation,

Efficient detection and orbit determination for solar system objects
One of the LSST's science missions is to catalog the population of solar system objects, with a
particular focus on potentially hazardous chjects. Due to the depth of LSST's images, about 200 sclar

ascale challenge.pd

system objects per square degree will be detected near the ecliptic.  The LSST cadence on the sky is
not optimized solely for tracking solar system objects, so this dense swarm of objects must be relizbly
tracked through considerable gaps in time.  Algorithms must be developed that are robust to possible
miz-asseciations of detections at different epochs, and have acceptable computational scalshilicy,

Achieving required photometric accuracy and precision

The LSST Science Requirements Document (SRD) requires 2 level of photometric (intensity data)
accuracy and precision that may be difficult to achieve over the entire sky, particularly since the LSST
will be operating in 2 wide variety of seeing, sky brightness, and atmospheric estincion. To
achisve this requires a thoroughly tested calibrazion procedure and azssocated image processing
pipeline, In zcdition to the point-source reguirements in the SRD, accurste photometric redshifts
require precision photometry for spatially extended objects.

Achieving required astrometric accuracy and precision

The LSST SRD requires a level of astrometric [position on the sky) accuracy and predsion that is
difficuls to achieve over the entire sky. Ac |'|e~.|"|;| this astrometric performance reguires 2 global,
whole-zxy, numerical solution for zll per-frame azstometric quantities that minimizes a cost
function. Considerable work will be required to develop an efective cost function.

Achieving optimal object detection and shape measurement from stacks of images

Most chjects that will be used for dark mater and energy science are too faint to be usefully
mezsured in 3 single LSST exposure. Instead, the LSST must detect and measure the pr operties of
objects combining information from mu'tiple exposures of the same region of shy (image
stacks). Weak lensing galaxy shape messurements ars pal'tu:u arly vulnerable to systematic effects
introduced by errors in the local point-spread function (PSF) determination, and thess systematic
effects must be minimized. Exposures may vary sign flcant ¥ in their signal-te-noise and PSF guality,
ar:l |:|E ning how to u::ntlr"all-‘r combine informatian from zll of them iz 2 research problem, Se=

Huniy £ for more information.

Need to develop a flexible approach that enables highly reliable classification of objects

Classification of astronomical objects is important and difficuls. A wide varisety of information must be
assessed to refiably classify an cbject.  This includes spatizl morphelogy in multiple coloss
photometry in multiple colors, time dependent behavior, and astrometric motion,  Further, the best
classifications will make use of surveys in other wavelength regimes and spectral information where
available, not sclely information from the LSST. Experience from many surveys has shown that no
single algorithm can do a good job on all objects.  Rather, good algorithms tend to be specialist,
limized to particu'ar cbjects classes, e.g. eclipsing binaries or supemovas. & successful system must
allow the development and incorporation of a wide varisty of algerithms in 2 flexible manne-.

Adaptive retuning of algorithm behavior

Severzl key zlgorithms emploved in the LSST application pipelines are complex, cortaining many
data-dependent decisions and 2 large number of tuning parameters that affect their behavior, As
chserving conditions change, an jgc"i:hr" may begin to fail for 2 particular cheice of tunin
parameters. LSST's extreme’y large cata volume makes human intervention in such cases impractical,
but it is essential that the pipelines continue to function successfully.

Need to verify scientific usefulness of the LSST database schema and its implementation
against realistic queries

The LSST database schema must eFciently support queries of data that have many relationships
between multple locations on the sky, epochs of obsenvation, and filters employed. A high
peformance implementation of this schema has many complexities that are addressed in the peta-
scale datzbase architecture and analysis task. The ultmate test of how well these tasks have been
carried out is to perform science with the database, To do this ussfully, we are simulating LSST data,
using datz from cumrent surveys, and engaging the LSST Science Collzborations and scientific
COMIMUniTy.
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Distributed data are the norm (across people, ="
institutions, projects, agencies, nations, ...)

Data are usually heterogeneous (e.g.,
databases, images, catalogs, file systems, web
interfaces, document libraries, binary, text,
structured, unstructured, ...)

Scientists want to query and to mine these
data (= 2 different user scenarios)

Virtual Observatory implementations enable
data discovery and integration, but do not yet
facilitate large-scale data mining




Mismatch:

e Data volumes increase 1000x in 10 yrs

e |/O bandwidth improves ~3x in 10 years

DOE-identified problem areas: “(1) data movement, rather
than computational operations, will be the limiting factor
for exascale systems; (2) memory per core is expected to

decline sharply; (3) the performance of storage systems will
continue to lag far behind.” (Ref: Exascale Co-Design Centers)

Therefore ... Distributed Data Mining

'“ [qﬂs‘ﬁﬁ
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e DDM comes in 2 types:
1. Distributed Mining of Data
2. Mining of Distributed Data

e Type 1 requires sophisticated algorithms that
operate with data in situ ...

 Type 2 takes many forms, with data being
centralized (in whole or in partitions) or data
remaining in place at distributed sites

e References: http'//www cs.umbc.edu/~hillol/DDMBIB/

- C G nella, H. Du tt K Borne, R. W Iff, H. Kargupta. (2006) Distributed Data Mining for Astronomy Catalogs. Proceedings of 9th Workshop on Mining
tf and En g D sets, as part of the SIAM International Conference on Data Mining (SDM), 2006. [
http //www.cs mb d / hII I/PUBS/P apers/Astro.pdf ]
- H. Dutta, C. Gia II K Bo d H K argupta. (2007) Di t ibuted Top-K Outlier Detection from Astro y atalogs using the DEMAC System. Proceedings

of the SIAMI t /C f n Data Mining, Minneapolis, USA, April 2007. [ http://www.cs. mb du/~ hI I/PUBS/P apers/sdm07.pdf ]
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D, DENERY DDM

Because ...

... many great scientific
discoveries have come

from inter-comparisons
of diverse data sources:

- Gamma-ray bursts

- Radio galaxies

"Just checling.”




e Summary :
1. Data Science Research Challenges
2. Data Science in Education



Scalability of statistical, computational, & data mining
algorithms to peta- and exa- scales

Algorithms for optimization of simultaneous multi-point fitting
across massive multi-dimensional data cubes
Multi-resolution, multi-pole, fractal, hierarchical methods and
structures for exploration of condensed representations of

petascale databases

Petascale analytics for visual exploratory data analysis of
massive databases (including feature detection, pattern &
Interestingness discovery, correlation mining, clustering,
class discovery, eigen-monitoring, dimension reduction)
Indexing and associative memory techniques (trees, graphs,
networks) for highly-dimensional petabyte databases

Rapid query and search algorithms for petabyte databases




Addresses the data science challenges, research agenda, application areas,
use cases, and recommendations for the new science of Astroinformatics.

See also http://arxiv.org/abs/0909.3892

State of the Profession position paper, submitted to the Astro2010 Decadal Survey
3/15/2009

Astroinformatics: A 21st Century
Approach to Astronomy

Authorship: This Position Paper was prepared and endorsed by the following team of 91
astronomers and information scientists (listed separately). The lead author is Kirk D. Borne
(Dept. of Computational and Data Sciences, George Mason University, kborne@gmu.edu).
The team maintains a web site that hosts information about the authors (including email
addresses and links to web sites) and supporting information for this document:
http://inference.astro.cornell.edu/Astro2010/ .



http://arxiv.org/abs/0909.3892�

Computational and Data Sciences

Combining science and computing to meet human needs ...

http://cds.gmu.edu/
Dept of Computational & Data Sciences

@ GMU (George Mason University)
Fairfax, VA



http://cds.gmu.edu/�
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* Informatics enables transparent reuse and analysis of

scientific data in inquiry-based classroom learning
(http://serc.carleton.edu/usingdata/).

The 215t century workforce demands training and skills in
these areas, as all agencies, businesses, and disciplines are
becoming flooded with data.

Numerous Data Sciences programs now starting at several
universities (GMU, Caltech, RPI, Michigan, Cornell, ...).

CODATA ADMIRE initiative: “dvanced [ ata '/'ethods and
nformation technologies for “esearch and " ducation



http://cds.gmu.edu/

e Primary Goal:

— to increase student’s understanding of the role
that data plays across the sciences as well as to
increase the student’s ability to use the
technologies associated with data acquisition,
mining, analysis, and visualization.

Computational and Data Sciences

Combining science and computing to meet human needs ...



http://cds.gmu.edu/�
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