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Motivation

 The lack of QoS differentiation in HEC storage systems
 Unable to recognize different application I/O workloads

 Unable to satisfy users’ different I/O performance needs
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Motivation

 The need for different I/O QoS from HEC applications
 Diverse I/O demands and performance requirements

 Examples:
WRF: Hundreds of MBs of inputs and outputs

mpiBLAST: GBs of input databases

 S3D: TBs of restart files on a regular basis

 This mismatch will become even more serious in 
future ultra-scale HEC systems
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Objectives

 Per-application storage resource allocation
 Parallel file system (PFS) virtualization

 Efficient management of storage resource allocations
 Storage management services

 Automatic optimization of storage resources usage
 Autonomic storage resource management
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Per-application I/O Bandwidth Allocation

 Problem: Lack of per-application I/O bandwidth 
allocation
 Static partition of storage nodes is inflexible

 Compute nodes based partition is insufficient

 Proposed solution: PFS virtualization
 Per-application virtual PFSs

 Dynamically created and destroyed based on application lifecycles

 Application-specific I/O bandwidth allocation per virtual PFS
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PFS Virtualization

 Proxy-based PFS virtualization
 Indirection of application I/O access 

 Creation of per-application virtual PFS 
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Implementation

 Prototype
 A PVFS2 (Parallel Virtual File System) proxy

 Intercept PVFS2 messages and virtualize PVFS2 deployment

 Evaluation
 A virtual machine based testbed

 Up to 128 PVFS clients and 16 PVFS servers

 Benchmark: IOR2
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Virtualization Overhead
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Simulation-based I/O Scheduling Study

 PFS simulator
 To flexibly study parallel I/O scheduling algorithms

 Simulate PFS network 
 Use discrete event simulation library (OMNeT++ 4.0)

 Simulate PFS disks
 Use DiskSim to simulate the disks

 Our focus is in parallel I/O scheduling
 Simulate enough details necessary for scheduling study 

but with an acceptable simulation time
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Simulator Architecture
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Implementation of Scheduling Algorithms

 Other scheduling algorithms, e.g., FIFO, Distributed SFQ 
(DSFQ), MinSFQ, are also implemented
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/* SFQ algorithm, at each data server */
systime = 0
waitQ.initiate()
while(!simulation_end) {

if reqArrive(), then:
R = getReq()
R.start_tag = min { R.getPrevReq().finish_tag, systime }
R.finish_tag = R.start_tag + R.cost / R.getFlow().weight
pushReq(R, waitQ)

if diskHasSlot(), then:
R = popReqwithMinStartTag(waitQ)
systime = R.start_tag
dispatch(R)

}

The request from client arrives 
at the data server.

DiskSim tells OMNet++ that it 
still has free slot.

OMNet++ dispatches the 
request to DiskSim.



Simulation Example 1

 Simulating a PVFS2 setup
 2 parallel applications (each with 16 clients)

 4 data servers and 1 metadata server

 All files striped to all servers (stripe size: 256KB)

 Trace files are generated by IOR2
 Each client does a 100MB checkpoint operation

 I/O scheduling algorithms
 FIFO 

 Local SFQ with different weight assignments (1:1, 2:1, 10:1)
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Throughput Results
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Simulation Example 2

 Similar to Simulation 1, except that workloads are 
not evenly distributed across the data servers
 Application 1’s files are stripped to all servers [1, 2, 3, 4]

 Application 2’s files are stripped to only 3 servers [1, 2, 3]

 I/O scheduling algorithms
 FIFO

 Local SFQ

 Distributed SFQ (all servers share the global scheduling 
information)
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Throughput Results

15HEC FSIO 2010

FIFO

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

SFQ (1:1)

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

DSFQ (1:1)

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2



Conclusion and Future Work

 Proxy-based PFS virtualization is feasible
 Its throughput overhead and resource usage overhead are 

not significant

 TODO: implement optimized I/O schedulers upon proxy

 Simulation-based PFS scheduling study is valuable
 Its results can guide the design of real I/O schedulers

 TODO: improve the scale and realism of simulation
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Parallel File System (PFS) Background

 At the core of storage resource management
 Components: PFS clients, data servers, metadata servers

 Examples: GPFS, IBRIX, Lustre, PanFS, PVFS etc.

 Designed for general parallel applications
 No differentiation of different application I/Os

 Fine-tuned for overall system throughput
 Not for specific application I/O QoS requirements
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Different virtualization approaches

 Proxy based virtualization
 Applicable to different PFS protocols

 Seamless integration with existing HEC storage systems

 Non-negligible overhead due to extra layer of indirection

 PFS extension based virtualization
 Modifications on existing PFS protocols

 Support for per-application I/O identification and handling
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Service-based Storage Management

 Problem:
 Management of I/O bandwidth allocations for a large 

number of applications in a ultra-scale HEC system

 Proposed solution:
 Service-based middleware for managing virtual PFSs

 Storage resource scheduling

 Storage resource monitoring
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Service-based Storage Management

 Storage resource scheduling
 Support for per-application reservation of I/O bandwidth

 Integration with typical HEC job schedulers (e.g., PBS, 
Torque, LoadLeveler)

 Storage resource monitoring
 Support for per-application tracking of bandwidth usage

 Integration with typical cluster monitoring frameworks 
(e.g., Ganglia, ClusterMon)
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Autonomic Storage Resource Optimization

 Problem:
 Dynamic resource scheduling for fair sharing of storage 

resources

 Automatic optimization of I/O bandwidth utilization

 Proposed research:
 Autonomic storage resource management upon the 

virtualized PFS infrastructure
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Autonomic Storage Resource Optimization

 Proxy-based autonomic 
I/O control loop

 Dynamic scheduling 
algorithms (e.g., SFQ)

 Optimization based on 
coordinated scheduling
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Existing PFS simulators

 The IMPIOUS simulator, by E Molina-Estolano, al. 
et[1]. 
 It does not model the metadata server. 

 The scheduler modules are lacking, so scheduling 
algorithms are hard to model.

 The simulator developed in PVFS improvement 
paper by Carns P. H., al. et[2]. 
 It over simulates the network, which extends the 

simulation time.

 It uses real PVFS in simulation, which introduces too much 
details, while not flexible.
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Simulator Details

 Use the discrete event simulation library OMNeT++ 
4.0 to simulate the network.
 It is capable of simulating the network topology with 

bandwidth and delay.

 Use DiskSim to simulate the data server disks.
 Disksim accurately estimates the time for data  

transactions on the physical disks.

 Disksim allows users to extract disk characteristics from 
real disks.
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