
Breakout 2.1; End-to-end data
protection

Scope

 End-to-end means protecting the data between
inception and, later, use

Uncertainty Quantification

 Generates a quantified “confidence” in the
result

 In DOE/NNSA apps; Run big 6 month
simulation, smultaneouswly run lower fidelity
simulations to get a handle on the error present
in the large run

 Can we codesign with the UQ folks to
incorporate data reliability?

 Ultimately, goal is to “make sure the user is able
to get his job done”
 UQ or end-to-end, two paths to the same end

Standards Based Protection
Schemes

 Such as T10DIF, now T10PI
 Need an API for the app, maybe extended

attributes?
 Various implementation schemes discussed

 Distributed checksum generation
 One size fits all solution won't work

 Data has different value and value changes over
time

 Hardware should be reliable!
 We should contemplate unreliable hardware

Accept Reality

 Errors happen; Fess up!
 Seems dangerous, we plan to barely exceed

hardware, hardware plans to barely exceed us,
ratchets down to the ridiculous

 Admitting you are in denial is the first of the twelve
steps.

 Would multiple, parallel, paths through the stack
help?

The Cost/Value Proposition

 Can it become more expensive to run the job
twice than to detect/correct?

 Do it anyway, eventually all data will reside in
the cloud

 But... BG is deterministic. Go ahead, run it
again and get the same (erroneous) result

 If end-to-end, would apps use it?
 Researcher is betting their reputation; You bet they

would!

Summary

 End-to-end will be important
 Detection is important
 Their will be a collection of methods to deal with

this
 Available at various levels
 Making them play together is a doomed exercise

 Apps need to participate
 UQ may be another, “cheaper” way to reach the

same goal

	Breakout 2.1; End-to-end data protection
	Scope
	Uncertainty Quantification
	Standards Based Protection Schemes
	Accept Reality
	The Cost/Value Proposition
	Summary

