
Access Method Support File System (AMS-FS)
Joe Naps - University of Minnesota, Email: naps@cs.umn.edu

Group: HPC-5, Mentors: James Nunez, Meghan Wingate

Introduction

Modern scientific computing generates petabytes of data and
billions of files that users must manage. Files are then organized
into hierarchical file systems, by name, into a tree of directories that
must be manually navigated. Tools such as Google Desktop and
Apple Spotlight have allowed for organization of files on metadata
such as file owner, file type, file size, etc. This work looks to improve
on these tools in the following way:

I Minimize need for custom user interfaces.
I Provide a known command line interface with the search tool.
I Expand file queries beyond metadata attributes.

A tool that is common to many scientists is the POSIX API. This API
is not optimized to work with the amounts of data at the scale that
exists at LANL. This poster presents the foundational work for two
ideas:

1. Access Method Support File System (AMS-FS): A file system
that provides querying of file system information integrated with the
well known and time tested POSIX API.
2. Incremental Growth Index (IGI): An indexing structure designed
to operate within the very large environments that are present here
at LANL and at many facilities around the world.

The final goal of AMS-FS is to alleviate problems facing many
scientists. Files are often organized using esoteric naming
conventions that must be navigated in order to find relevant
information. These conventions can generate large amounts of work
if they happen to change. With AMS-FS, instead of needing to follow
a complicated path to get to experimental data, this information can
be obtained using a simple ’ls’ command.

Current Approaches

This work aims to exaime three problems with current file
organization in scientific computing:

1. Metadata Search: Current tools require custom user interfaces
that do not always meet the needs of the user.
2. File Content Search: Many file types used in scientific
computing are structured in such a way that information in the file
can be queried. In order to query these files more custom interfaces
must be designed.
3. Multiple Output Files: Current computaltional methods such as
parallel computing and MapReduce often produce multiple output
files for a single task. Once again, custom programs are needed to
extract relevant information.

AMS-FS looks to take these three issues and combine them into a
single processing paradigm, the POSIX API (ls, mv, cp, etc.). This is
a well know set of tools that most researchers will be familiar with.
AMS-FS is implemented as a FUSE module [1].

AMS-FS Archtecture Overview

When a query enters AMS-FS, its execution goes through a two
step process:

1. Query Tree Construction: A tree based on the given query is
constructed for evaluation.
2. Query Evaluation: Using the query tree, files and their
information are then read from disk and only those files satisfying
the query are reported in the end result.

Figure: AMS-FS Parallel Query Evaluation Architecture

Query evaluation follows a five step process:

1. Producers read file information from the disk
2. The information is buffered in memory
3. Consumers read this information from the buffer
4. The file information is processed in the query tree
5. If the file satisfies the query, it is reported in the final result

Incremental Growth Index (IGI)

Important in many I/O bound applications is the presence of an
indexing structure. An indexing structure aims to reduce reads from
the disk by pruning the data space that one must access. Here we
present a new indexing structure, IGI, based on the Incomplete
Pyramid Structure [2].

Figure: The Incomplete Pyramid Structure

Incremental Growth Index (IGI) cont.

Due to the large amount of data stored at LANL, any structure
aiming to index the data must be able to construct itself quickly.
Current research [3] does not cover the problem of fast index
construction at the petabyte scale. To accomplish this, IGI begins as
a small and lightweight, but coarse grained index. As query load
increases to various areas of the index IGI is able to dynamically
expand to become more fine grained, and thus, prune more of the
search space.

(a) Initial Structure (b) High Query Load (c) Cell Decomposition (d) High Query Load

(e) Cell Decomposition (f) High Query Load (g) Cell Decomposition

Figure: IGI Execution Example

Future Work

Future work on AMS-FS fits into three categories:

1. Large Scale Testing: AMS-FS must be tested, evaluated, and
modified to work efficiently on the large scale systems present at
LANL.
2. Index Development: The Incremental Growth Index must be
fully developed.
3. Expansion Of Operations: The current architecture only will
operate on metadata queries. Functionality must be added to allow
for file content queries over single and multiple files.

Selected References

[1] http://fuse.sourceforge.net/
[2] W. G. Aref and H. Samet. Efficient Processing of Window
Queries in The Pyramid Data Structure. In PODS, 1990.
[3] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, E. L. Miller.
Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage
Systems. In USENIX 2009.

Los Alamos National Laboratory, HPC-5


