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Analyzing the Evolution of
Large Scale Structures in
the Universe with Velocity Based Methods.

Category: Application

ABSTRACT

Multistreaming events are of great interest to astrophysics because
they are associated with the formation of large scale structures
(LSS) such as halos, filaments and sheets. Until recently, these
structures were studied using scalar density field only. This is an
application paper where we applied appropriate data analysis and
visualization techniques to cosmological simulations. The origi-
nal problem that was presented to us by the cosmologist we worked
with was whether it is possible to find multistreaming regions based
on velocity information only. Compared to the current practice
of using density information to find these regions (e.g. with halo
finders), we show that the velocity based methods that we propose
produce good agreement in general. More interestingly, there are
regions that are found by halo finders but not by velocity based
methods, as well as regions that are found by velocity based meth-
ods but not by halo finders. Further analysis of our results indicate
that not all halos are interesting, while there are some interesting
regions that are missed by halo finders. In addition, the velocity
based feature extractors show dynamical behavior not possible with
halo finders. Thus, while we started with the simple question of
finding multistreaming regions using velocity information, we are
re-examining the relationship between halos and multistreaming re-
gions, and discovering new properties of these regions that can be
used for classification purposes.

1 INTRODUCTION

Over the last two decades cosmology has made extremely rapid
progress. There now exists a cosmological “Standard Model” that
is in very good agreement with a large number of observational
datasets at better than the 5 — 10% level of accuracy. A key feature
of the model is the existence of a “dark” sector that is not directly
observable by emission or absorption of light but may be inferred
via effects such as gravitational lensing and by its dynamical ef-
fects, especially in the formation of cosmic structure. Observations
indicate that 70% of the Universe consists of a mysterious dark en-
ergy, 25% of a yet unidentified cold dark matter (CDM), and only
0.4% of the remaining 5% of ordinary (atomic) matter is visible
[12]. Understanding the physics of the dark sector is the foremost
challenge in cosmology today.

The evolution and dynamics of the dark matter distribution can
be investigated by following the formation of LSS as observed in
the distribution of galaxies today, and in the past. LSS are of-
ten characterized by the dimensionality of their spatial distribution
e.g. galaxy clusters (0D), filaments (1D), and surface-like pancakes
(2D). A hint of the complex geometry and topology of cosmic struc-
ture is illustrated in Figure 1.

Precision dark matter simulations are a key foundation of cosmo-
logical studies. These simulations track the evolution of the dark
matter with very high resolution in time, force, and mass. At the
scales of interest to structure formation, a Newtonian approxima-
tion in an expanding universe is sufficient to describe gravitational
dynamics. The evolution is given by a collisionless Vlasov-Poisson
equation [6], a six-dimensional partial differential equation. This is
solved using an N-body approach. The six-dimensional phase space
distribution is sampled by “tracer” particles and these particles are
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Figure 1: Large scale cosmological structures of the universe.

evolved by computing the inter-particle gravitational forces.

The starting point of the simulations is a Gaussian random den-
sity field which imprints small perturbations on a uniform density,
isotropic universe. The simulations start in the linear regime of
the density fluctuations which then evolve under the influence of
gravity. At any given length scale, during the early stages, the evo-
lution remains linear but as time progresses, evolution first enters
the quasi-linear regime (where perturbation theory can be applied)
before finally reaching the fully nonlinear regime at which point
all analytic descriptions break down. There is substantial interest
in determining and characterizing the transitions between linear,
quasi-linear, and nonlinear dynamics in the simulations by track-
ing the dynamics of dark matter tracer particles. At the start of the
simulation, the velocity dispersion is initially zero, and the phase-
space distribution is a three-dimensional sub-manifold of the phase
space (only one velocity direction at a given spatial point). As the
3-hypersurface evolves, it folds, leading to the occurrence of sin-
gularities in the density field corresponding to the appearance of
regions with multistream flow.

Finding multistreaming regions in cosmological simulations is
an important endeavor for several reasons. The onset of multi-
streaming and the evolution of multistreaming regions as part of
the theory of nonlinear structure formation is certainly interesting
in of itself. Additionally, it is becoming an increasingly impor-
tant aspect in understanding the formation of galaxy clusters where
several “cold flows” combine. Different cosmological models and
theories of structure formation will make different predictions for
multistreaming.

The determination of the onset of multistreaming with respect
to time and length scale is important in predicting the validity of
approximate methods such as perturbation theory. Since running
large cosmological simulations is very costly, cosmologists are al-
ways searching for methods that provide accurate answers at certain
scales that do not require expensive simulations. For example, con-
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Figure 2: lllustration of 1-D multi-stream flow. Top panel: High den-
sity region with three-stream flow confined between the dashed lines.
Bottom panel: The corresponding phase space plot showing the dif-
ferent stream regions [15].

sider a key cosmological statistic measured from simulations: the
density fluctuation power spectrum. This power spectrum can be
predicted over a range of (large) length scales by perturbation the-
ory. Multistreaming, however, cannot be described within pertur-
bation theory. Thus, it is important to study the relationship of the
breakdown of perturbation theory and the onset of multistreaming.

Finally, a robust method to capture the onset of multistreaming
across multiple scales will help to set the initial cosmological time
for starting cosmological simulations. The initial conditions for
cosmological simulations are based on the Zel’dovich approxima-
tion, which is only valid if the paths of tracer particles do not cross
(i.e., before multistreaming). Therefore, the simulations have to be
started sufficiently before the occurrence of multistreaming events
in order to guarantee accurate results.

Traditionally, LSS is investigated primarily by considering the
distribution of dark halos. Although there are differences between
methods, halos are typically identified by thresholding on the den-
sity of tracer particles (for a description of halo finders, see, e.g.,
[10]). In this paper, we are concerned not so much with density,
but how the velocity information of tracer particles can find and
characterize multistreaming regions.

2 MULTISTREAMING

What is multistreaming? Unfortunately, there is no single precise
mathematical description of multistreaming. As such, the problem
is reminiscent of finding vortex core lines in vector field analysis.
What do exist in literature are phenomenological descriptions of
multistreaming events. In this paper, we derive several velocity
based multistreaming extractors based on such descriptions.

Multistreaming is said to occur when there are multiple veloci-
ties at a given spatial point. A simple example is illustrated in Fig-
ure 2 for a one-dimensional cold and collisionless medium [15]. In
the phase space plot (bottom panel), the boundary between a three-
stream flow and a single stream is denoted by the dashed lines. At
the boundaries, there is a shell-crossing singularity (caustic) in the
density field (p) because the mapping from phase space to physi-
cal space becomes multi-valued. This picture generalizes to higher
dimensions.

One can also find additional clues for finding multistreaming
from the following description — “If the dark matter is a cold,
collisionless fluid, then at any given spatial point, at early times,
there is a unique fluid velocity. However, as evolution proceeds,
the map connecting initial to final positions develops singularities

(caustics) corresponding to multiple flow directions at a given spa-
tial point. Regions of multistream flow form, and even though each
stream is irrotational (curl-free), the velocity field is no longer a po-
tential flow. Because of the large density of particles near caustics
and other dynamical complexities associated with multistreaming,
it is expected that perturbative methods will tend to break down in
these regions” [13]. This description suggests additional avenues
for finding multistreaming events via velocity based analyses. For
example, we can look for regions where the flow is irrotational,
examine the divergence field to see where particles may possibly
congregrate, examine the linearity of the flow field, check similar-
ity of velocities as well as velocity dispersion. The following flow
behaviors may also account for multistreaming: (i) particle flows
have different speed and direction, or (ii) particles flows have the
same speed but different direction, or (iii) particles flows have dif-
ferent speeds but the same direction. So, checking the shear in the
flow may provide some information as well. We explore these in
Section 5.

3 PREVIOUS WORK

The visualization of cosmological data sets has received significant
attention. Most cosmological simulations are particle-based. The
size of these simulations, measured by the number of particles, have
increased with better computing resources, allowing us to capture
physical phenomenon at a much wider range of length scales.

Within the visualization community, there have been several
works focusing on astrophysics data sets. A small subset of these
include works by Li et al. [9] which explored how to display po-
sitional and trajectory uncertainties in astrophysical data sets; and
Fraedrich et al. [5] focused on scalable rendering of large cosmo-
logical simulations using a combination of hierarchical level-of-
detail approach and GPU accelerations. While these works have
studied the issues related to visualizing cosmological simulation
data, they are different from the work in this paper in that we are
primarily interested in feature extraction of multistreaming events
in such data sets.

Multistreaming events have been explored in recent years. For
example, Yano et al. [18] investigated the distribution of caustics in
the expanding Universe. In this work, the model describe contin-
uous matter density fields, such as singularities of density field or
density perturbations. Regions demarcated by high density contrast
are associated with multistreaming and results in structures such
as halos. The density contrast is defined as, for a given time and
region, how much does the density changes with respect to mean
density. Depending upon the types of the Universe simulated or the
halo structure of interests, such as inner halo parts or halo boundary,
the minimum value of density contrast varies. One of the common
approaches for finding halos uses the Friends-Of-Friends (FOF)
group finder [4]. The basic idea is that given a simulation with
N particles with a fixed volume, the average inter-particle spacing
is first calculated. Then, pairs of particles that are closer than some
fraction of the average inter-particle spacing are linked together, re-
sulting in a network of linked particles. We compare our results to
the FOF halo finder implemented in ParaView 3.10 [17]. An exten-
sive survey of other halo finders can be found in [1].

While there are a number of density based analysis similar to
[18], there are much fewer works based on the analysis of the ve-
locity field. The concept of phase space plots shown in Figure 2
easily extends from 1-D to 3-D, but using this approach to detect
multistreaming in 3-D has not been fruitful so far.

In flows with high shear, one can observe that locally, particles
will move at drastically different rates and direction. One way to
detect such regions in 3-D is to form tetrahedral volume elements
from 4 nearby particles. By tracking these tetrahedral volume ele-
ments over time, multistreaming regions can be detected when there
is a change in the sign of the tetrahedral volume. This happens be-



Online Submission ID: 180

cause some members of the tetrahedral volume moved in such a
manner to penetrate through the tetrahedral shape causing its vol-
ume to flip sign [3]. However, this approach tends to be more ex-
pensive since it requires multiple time frames of large data sets.

More recently, Shandarin [14] proposed a hew approach to iden-
tify the cosmic web based on finding multistreaming flows. Instead
of relying solely on the density of particles, Shandarin’s technique
incorporates velocity information of particles along with their posi-
tional information. He used the local velocity variance to identify
multistreaming events. Prior to his work, we have also worked with
particle velocity information to identify multistreaming events. In
that work, our analysis was based on simulations consisting of 643
and 2562 particles. The analysis and results reported in this paper
are based on simulations consisting of 5122 particles within a box
that is 256 h—Mpc along each side. Higher resolution data sets al-
low us to resolve multistreaming regions at a wider range of length
scales.

4 TIME AND SCALE DEPENDENT THRESHOLDS

Our approach to finding velocity based multistreaming regions as-
sumes a continuous velocity field is available. There are a num-
ber of options available for converting the discrete particle velocity
information into a gridded velocity format where we can assume
some form of continuity. These options range from the simple
nearest-grid-point (NGP) method that assigns particle velocities to
the nearest grid point, to more sophisticated methods such as those
that use radial basis functions to provide a smooth velocity field.
NGP has some drawbacks such as abrupt changes between nearby
grid points, while more sophisticated methods are also more expen-
sive as the number of particles and spatial resolution increase. In
this paper, we use the cloud-in-cell (CIC) method to generate a ve-
locity field from the particle velocity. CIC [7] uses a weight factor
to account for the distance of the particle to its closest grid points.
That is, the velocity of each particle is distributed, using a distance
based weight factor, amongst the grid points of the cell containing
the particle. This method is a good compromise in terms of speed
and smoothness of the resulting field. It is also the same method
used in the simulation code to resolve the influence of the gravita-
tional field on the particles.

The choice of grid resolution is quite important. If the grid is too
coarse, the resampling process will smooth out the data too much
and we may miss the multistreaming event. On the other hand,
if the grid is too fine, it would result in a low particle count and
confidence, not to mention the extra computational expense. The
main requirement is that the grid size has to be small enough to
resolve the features of interest at certain length scales. For our in-
vestigation, we choose a grid resolution such that on average there
are 64 particles contributing to each grid point. The demonstration
data set provided to us for this investigation contained 5123 par-
ticles. The simulation consisted of 499 time frames from redshift
Z=50 to Z=0, covering a box domain measuring 256 h—Mpc per
side, and with the entire data set stored in 2 terabytes. To achieve
the desired average particle density per cell, we used a regular grid
with 2562 cells for converting the particle velocities into a contin-
uous velocity field. Note that there are much larger data sets such
as the Bolshoi simulation [8] where our proposed techniques can
be applied later on. As we explain later, this grid size also allows
us to find multistreaming regions early on in the evolution. At the
start of the simulation, each grid cell contains 8 particles on aver-
age. Therefore, the 8 cells sharing a grid point contain 64 particles
on average. The simulation uses periodic boundaries. Note that
as time progresses, some regions become more dense while others
become more sparse or even empty. Empty cells as well as those
in their immediate vicinity must be treated with care and are spe-
cially marked so that they do not produce erroneous results in the
analysis.
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Figure 3: Breakdown of perturbation theory at different scale factors
(a) and different length scales (L). The curves are the ratio of two
different perturbation theories. As the ratio deviates from one, per-
turbation theory is not valid anymore. Each curve shows the result for
one time snapshot. At the top of the plot we indicate length scales, at
the bottom we indicate wave numbers. The dashed lines in red show
the scales that can be resolved by the simulation data.

One may also wonder whether particles actually collide in such
simulations. To determine this, we examined the most dense cell at
a later time in the simulation, and found that the average distance
between any two particles is 0.09 h—1Mpc. We also searched for
the two closest particles and the distance between them was 0.0018
h~1Mpc, about 50 times smaller than the average distance. Since
these tracer particles do not actually collide, although the “streams”
around them conceptually do, we perform our analysis using a sin-
gle velocity field.

Based on previous studies, we know that multistreaming happens
at different scales and increases over time. Initially, small multi-
streaming regions form, which later coalesce in a complex manner
into larger multistreaming regions. Hence, an important parame-
ter in searching for multistreaming regions is estimating the length
scales for different times. In order to do this, we examine when
perturbation theory fails. The perturbative treatment of gravita-
tional clustering should break down in regions where multistream-
ing events occur. To predict these events, we make the following
simple argument based on an internal check within the perturbative
analysis. To do this, we note that perturbation theory can be carried
out at different orders in the density perturbation. In the regimes
where perturbation theory works, higher-order corrections serve to
improve the lower-order results. However, once the fluctuations are
too large, consistency between orders no longer exists, and different
order results can disagree strongly. By investigating at what scales
two different approaches at different orders diverge from each other,
we can estimate the scale where perturbation theory fails, and hence
produce a candidate scale for the onset of multistreaming.

Following Carlson et al. [2], we calculate the matter power spec-
trum for second order perturbation theory and a re-summed scheme
with a code provided by the authors. We then take the ratio of these
power spectra at different epochs. The results are shown in Figure
3 for scale factors between a = 0.02 and a = 1.0. Note that red-
shift is related to the time dependent scale factor a. An estimate of
when and at what length scales multistreaming will occur can be
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a Frame # | RedshiftZ | L scale 10% L scale 5%
0.500 248 1 37h~IMpc | 43h~IMpc
0.333 165 2 30h~IMpc | 34h 1Mpc
0.250 123 3 24h~IMpc | 27 h IMpc
0.200 95 4 18 h~IMpc | 24 h~IMpc
0.167 80 5 14 h~IMpc | 19 h~IMmpc
0.111 70 6 10 h~IMpc | 12 h~IMpc
0.125 60 7 8h~IMpc | 10h~IMpc
0.111 52 8 6 h~*Mpc 8 h~*Mpc
0.100 47 9 58h~IMpc | 7h IMpc
0.091 43 10 56hIMpc | 6h 1Mpc
0.045 21 20 2h~IMpc 3h IMpc
0.033 13 30 1hIMpc | 1.05 h~IMpc
0.020 7 50 0.9 h~IMpc | 0.98 h—Mpc

Table 1: This table shows the relationship between the scale factor a
and the frame number of the simulation. It also shows length scale
for two different tolerances at which perturbation theory breaks down.
The tolerances are at 10 and 5 percent from the ratio of one between
the two perturbation calculations seen in Figure 3. When choosing
the grid size for calculating the continuous fields it is important that
the smallest length scale of interest is resolved. For example, with
redshift 30 at a tolerance of 10 percent, the scales of interest are at
1 h~*Mpc. With a box size of 256 h~1Mpc the grid size has to be at
least 256° to resolve these scales. If the grid is coarser, the length
scale that can be resolved increases and therefore multistreaming
events could only be resolved at a later time step. To determine the
thresholds for the different methods described in the next section,
we use a tolerance of 10 percent, which has a finer grid requirement
than using a tolerance of 5 percent.

obtained by measuring the scales at which the curves deviate from
unity in Figure 3. The figure indicates that these scales vary with
time. Multistreaming regions that are relevant to the breakdown of
perturbation theory start out as small structures which grow big-
ger over time. The dashed line on the right indicates the resolution
limits due to smoothing from the density calculation. It can be eas-
ily varied by reducing or increasing the grid size for the CIC (an
increase moves the cutoff lower and a reduction moves it higher),
although one cannot increase it beyond a certain point set by par-
ticle spacing limits in the simulation. For the data set being pre-
sented in this paper, the smallest wave-number (k = 271/L) is k ~
0.02 h~1Mpc, and the corresponding smallest length scales we can
resolve is 0.256 h—1 Mpc. Using a grid of 2563 cells, we can resolve
length scales of 1 h—1 Mpc. However, when coupled with CIC with
window size equal to one cell, our resolution drops to length scales
of 2h~Mpc.

Table 1 is created based on the predictions from Figure 3. It lists
the expected size of the multistreaming scales for different snap-
shots in the simulation data. The time stepping unit is measured
with respect to the scale factor a. Given that there are 500 time
steps in the simulation, Aa = 0.002 from one frame to the next. In
short, this table provides us with information as to the timing and
length scale of multistreaming. The next section focuses on finding
their location.

This table is instrumental in determining the threshold values
used by the different feature extractors. As can be seen in this table,
multistreaming regions grow over time. We therefore use the infor-
mation from Table 1 to guide us in finding a time-varying threshold
appropriate for the epoch in the simulation. For example, if we
are searching for regions of interest at frame 250, we expect these
regions to have length scale of about 37 h~IMpc. Therefore, we
want to find a threshold value that will produce regions of this ex-
pected size. Since the regions may come in a variety of shapes, and

because the length scale itself does not fully capture shape infor-
mation, we use it as an indicator of a region size rather than a strict
length scale. In this regard, region size is taken to mean the num-
ber of connected grid points that are above the current threshold.
To determine the appropriate threshold for a given frame, the initial
threshold threshold,), is set to a value that will result in all points
being classified as multistreaming according to the feature extrac-
tor. We then adjust the current threshold by a small amount, which
is some fraction of the range of values for the particular feature
extractor, and restart the scanning process. Once we find at least
one region with the expected feature size, we finalize the threshold
value for that frame. Because the growth of region size is fairly well
behaved, we can use the final threshold value of the current frame
as the initial guess for the next frame.

5 VELOCITY BASED EXTRACTORS

In this section, we present six velocity based extractors to detect
multistreaming. They are based on the phenomenological descrip-
tions of multistreaming found in astrophysics literature. Since our
science question is whether one can find such events using velocity
information instead of density information, we used fairly straight-
forward formulations using just local information.

5.1 Maximum Shear Stress

Particles going in opposite directions or even in the same direc-
tion but at different speeds lead to shear in the velocity field. We
hypothesize that shear in the velocity field can be one of the mecha-
nisms for multistreaming. This method should be able to catch two
sheets moving in opposite directions. To find the maximum shear
stress, we first calculate the velocity gradient tensor of the velocity
field, then find its symmetric tensor component, and the associated
eigenvalues A;, A,, and A;. We use the von Mises criterion [16] for
maximum shear stress which is defined as:

MS — \/(/\1*)‘2)2+()\1 *2}\3)2+(A2*’\3)2 )

Note that as flows become isotropic i.e. A; = A, = A5, the max-
imum shear stress goes to zero. So, this particular feature detec-
tor looks for regions that exhibit high shear as indicated by highly
anisotropic regions. Note that other types of anisotropic measures
could possibly be used in place of the von Mises criterion.

5.2 Divergence

Divergence is a scalar quantity that measures the degree to which
a vector field is a source or a sink at a given location. Positive
values indicate a source-like behavior, while negative values indi-
cate a sink-like behavior. The motivation for using divergence for
finding multistreaming is that it finds regions where particles con-
gregate, as in caustics. The more negative the divergence value,
the stronger that region attracts nearby particles. Given a vector
field V = (Vy,Vy,V,) and operator 0 = (2, %7 2.), divergence is
defined as
oVx dVy 0V,

V=t ey T @

5.3 \Vorticity

In fluid dynamics, the rotation of vector field is well studied, and
is called vorticity. It determines the tendency of an object to rotate
at a given location (x,y,z). The vorticity at a point is a vector and
is defined as the curl of the velocity field. Given a vector field

V = (Vx, Vi, V) and the operator 0 = (£, aiy’ 2), the curl is
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Since multistreaming regions are suppose to remain curl-free (ir-
rotational), this metric provides an indication of how well this con-
dition is satisfied. Regions of interest are those with very small
rotational motions and not their particular orientations. Therefore,
the key variable is the vorticity magnitude.

5.4 Dot Product

Particles inside multistreaming regions have different velocities.
We can measure the degree to which a set of vectors are similar or
different using dot products. Given two vectors: V = (v;,V,, ..., Vn)

andU = (ug,U,, ..., Un), the dot product is defined as
— — n
V-Uu=3v-u 4)
i; i i

Note that this term measures similarity of both vector directions
and magnitudes. For this metric, we are primarily interested in
similarity of directions. Hence, the vectors should be normalized
first. This normalized dot product measures the angular difference
between pairs of vectors. The range of this metric is [-1..1] cor-
responding to 180 degrees (opposite direction) to 0 degrees (same
direction). Since the maximum shear metric already accounts for
situations where vectors are going in the same direction with dif-
ferent speeds or opposite directions with the same speeds, we tailor
the normalized dot product metric to find only those regions where
vectors are crossing each other at large angles. Specifically, we use
the absolute value of the normalized dot product. Values closer to
zero therefore indicate regions with crossing vectors.

To calculate this metric, we first calculate the average normalized
velocity of all the particles in neighboring cells that share a grid
vertex. We then calculate the dot product of each of the normalized
particle velocity against the vertex velocity. These dot products
are finally averaged together and represent the directional similarity
among the particles in the vicinity of the grid vertex.

5.5 Variance

Variance is a measure of how different and spread out a set of
numbers are from each other. Velocity variance then measures the
spread of velocities. Since multistreaming regions are characterized
as having different velocities (also referred to as the velocity disper-
sion property in literature), velocity variance is intuitively a good
measure for finding these regions. Shandarin [14] also used veloc-
ity variance in his analysis, but our formulation differs slightly. We
iterate over particles, while Shandarin iterates over flows.

Given n numbers X, X,,..Xn and a mean u, the variance o?is
defined as

0% == ;(xi —w? )

The CIC weighted velocity at each grid point is p. While the ve-
locities of the particles inside the 8 cells containing the grid point
are represented by x,. Since we are interested in velocity variance
in 3D, the calculation is performed for each velocity component.
The variance extends to a symmetric covariance matrix where the
diagonals are the variance of each velocity component. Treating
each component as an independent random variable, the net veloc-
ity variance is simply the sum of the diagonals. If this sum is high
it indicates high velocity variance. Unlike the normalized dot prod-
uct measure described earlier, this measure captures the variance of
both the direction and magnitude of the velocity field.

5.6 Linearity Test

Another test for multistreaming is to check if the velocity field is
still linear. This is motivated by the description that the simulations
start out being linear, then transition through a quasi-linear, and

finally to a nonlinear behavior. Detecting changes in the linearity
of the velocity field may be an indicator of multistreaming.

Given a velocity field V, position p, and velocity gradient J, we
can obtain the velocity of a nearby point that is dp away using first
order approximations, if the field is linear. From the velocity at p,
we can obtain the velocities around it through

V(p+p)=V(p)+JI(p)-5p (6)

op is set to one of [£1,0,0], [0,£1,0], or [0,0,+1] depending on
which neighboring velocity we want. To check whether the veloci-
ties around p are linear or nonlinear, we compare the first order ap-
proximation of V(p+ &p) against the original velocity Vo(p+ p)
at each of the 6 orthogonal neighbors. We use the normalized dot
product to see if the directions of two vectors are similar, and use
the absolute value of the difference of their velocity magnitudes to
see if their magnitudes are similar. Note that the simple unnormal-
ized dot product will consider velocities that agree in direction but
not in magnitude as being similar, which is not what we want in
this case. The vector pair is considered similar if their normalized
dot product is at least 0.90 (i.e. less than 25.8 degrees). If a vector
pair is similar according to this criterion, we assign it a value of 1,
else a 0. A grid vertex is determined to be nonlinear based on the
number of neighboring cells that are dissimilar. An aggregate value
of 0 means the cell is highly nonlinear, while a value of 6 means the
cell is linear. Note that if any neighbor of p is empty, we skip the
calculation of J(p) and do not apply the linearity test at p.

6 COMPARISON WITH HALOS AND DISCUSSION

In this section, we examine if the feature extractors were able to find
multistreaming regions. This question can be answered to a large
extent by comparing their output against those of a density based
halo finder. Due to space limitations, we only show images based
on the last frame of the simulation.

Figure 5 is the output from the Halo Finder filter of ParaView
applied on the last frame of the simulation. We use simple colored
ellipsoidal glyphs to identify and distinguish the different regions
found by the different extractors. In Figures 4 to 10, the glyphs
are scaled and colored by the size of the regions that are detected
by their respective extractors. In Figure 11, the color of the glyphs
indicate the type of extractor. In all cases, we vary the orientation of
the ellipsoids simply to distinguish among overlapping ellipsoids.
The orientations do not have any physical meaning.

The size of the extracted region is closely tied to the power spec-
trum prediction shown in Figure 3, which was used to determine the
time-dependent threshold of a particular method. There are many
definitions of a region size. It can be the smallest bounding box
around a region, or a diagonal of a box that bounds the region, or
number of cells that are contained inside the region. We chose the
last one, as it is the most accurate measure and easy to estimate,
since all our calculations are performed on a grid.

Maximum Shear Stress. The regions with high shear stress
are depicted in Figure 4. We can see that there is fairly good cor-
respondence between regions with high shear stress and high den-
sity regions. But there are quite a few smaller regions with high
shear stress but insufficiently high density to be detected by the halo
finder. Likewise, we can also observe some high density region
where the shear stress is not as pronounced (either the ellipsoidal
glyph is absent or very small — the spheres are rendered transpar-
ently). Using the maximum shear stress criterion alone. we can say
that not all halos have high shear stress, some potentially interesting
regions are missed by halo finders, and at a qualitative level, high
density regions have good correspondence with high shear regions.

Divergence. The results of the divergence extractor are shown
in Figure 6. Comparing this figure with Figure 5, we see that the
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Figure 4: Maximum Shear Stress. Region size is number of 1 h~*Mpc cells. Left: Ellipsoids scaled and colored by size of region with high shear

stress. Right: Overlaid with transparent brown spherical halos.

50

Figure 5: Halo Finder output from ParaView. Spheres are placed at
the center of halo mass and their radius and color are mapped to the
number of particles in a halo. The parameters use a link length (bb)
of 0.2 and a minimum (pmin) of 1450 particles. This is our reference
for comparing velocity based feature extractors. The image shows
the last frame of the simulation, frame 499 with redshift Z = 0.

2nd largest halo corresponds to the largest region with highly neg-
ative divergence (sink-like behavior). This indicates that the halo is
still very active in recruiting new particles from its surrounding and
increasing its density. The locations of other regions with negative
divergence roughly correspond to where the other more prominent
halos are located. However, the obvious lack of other significant
regions with negative divergence seem to indicate that at this stage
of the simulation accretion has subsided for most halos.

Vorticity. Figure 7 shows regions with low vorticity, and again
we can see the correspondence of such regions with the halos in
Figure 5. This time however, the largest region in 7 corresponds
to the 3rd largest halo in Figure 5. What one can surmise from
this particular frame is that the regions identified by this extractor
are curl-free. But it is harder to see if there are halos that are also
curl-free or if there are curl-free regions that are not halos. For
a more quantitative assessment, we defer that to Table 2. Due to
space limitations, we cannot show earlier frames of the simulation.
But we do notice that as time progresses, the vorticity decreases
confirming the general observation associated with multistreaming
events.

Divergence 7~ Region Size (Mpc/h)
T i e §2
- ol ko
MSS | o 40
VARN\ ;
LN N : .
T YiAxis !
DOT~| «
VOR / -
I, o UENE
e T T

Z=0, Frame 499 * 0

Figure 6: Ellipsoids scaled and colored by size of region with negative
divergence. Region size is number of 1 h~IMpc cells.
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Figure 7: Ellipsoids scaled and colored by size of region with low
vorticity. Region size is number of 1 h~Mpc cells.
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Figure 8: Ellipsoids scaled and colored by size of region with low
absolute values of dot product. Region size is number of 1 h~Mpc
cells.
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Figure 9: Ellipsoids scaled and colored by size of region with high
variance. Region size is number of 1 h~Mpc cells.

Dot Product.  Since we are using normalized quantities for this
extractor, we are primarily looking for regions where particles tend
to cross each other’s paths — characterized by low values of the ab-
solute value of this measure. In terms of correspondence between
the regions with low dot products in Figure 8 and large halos in
Figure 5, this measure seem to offer the least agreement. The only
exception is the region that corresponds to the high variance in Fig-
ure 9, which also has a high divergence in Figure 6. A possible
explanation for the apparent lack of crossing paths in the other ha-
los is that indeed their particle velocities are fairly homogeneous in
direction. That is, majority of the halos are fairly “boring” in terms
of activity and range of particle directions.

Variance. Comparing Figure 9 to the halo finder result, we can
observe that the main structures are similar. The four biggest halos
agree with the four biggest regions with high variance. The number
of regions high variance regions is very low, indicating that the rest
of the space is fairly uniform within its local region. This includes
those particles contained within the found halos.

Linearity Test. Figure 10 shows results of running the linearity
test. We can observe that nonlinear regions, shown by ellipsoids,
corresponds to the halos in Figure 5, particularly those in the upper
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Figure 10: Ellipsoids scaled and colored by size of region with high
nonlinearity. Region size is number of 1 h—Mpc cells.

half of the box. The overall structure of the nonlinear regions are
consistent with those found with other methods described earlier.

Particles, Halos, and Regions. Beyond the qualitative visual
agreement, we also look at some quantitative information with the
following caveat: halos represent over-dense regions, while the re-
gions found by the velocity based methods represent certain dy-
namic activity. The full relationship between halos and such regions
has not been established, although it is believed that multistreaming
is directly related to the formation of LSS, such as halos.

The halo finder found is 5036 halos. The number of particles
inside these 5036 halos is 25,314,910. To compare these against
the multistreaming regions, we define and measure two quantities:
accuracy and coverage. By accuracy we mean how many regions
out of those found by a method where also identified by halo finder.
For example, if method A found ten regions and nine of them inter-
sected (had common particles) with fifteen halos, then accuracy is
90%. While method A is pretty accurate its coverage is very low,
only 15/5036, which is less than 0.3%. Our definition of coverage is
the number of halos that were identified as interesting by both halo
finder and our method. Results are summarized in Table 2. The
two extreme cases are the variance method which found very few
regions but they are all halos, and the linearity method which found
a lot of nonlinear regions but only a few of them were found by
halos. These results also hint at the different dynamic behavior of
different halos and suggest a possible classification of halos based
on their behavior.

The methods are faster than the halo finder. On a desktop with a
6 core AMD phenom Il X6 processor and 16gb ram, it takes about
4 minutes to read a frame and another 17 minutes to find halos
using ParaView. On the other hand, the pre-processing time to con-
vert discrete particle velocities to a continuous field using CIC took
12.5 minutes. The different methods took varying times: maximum
shear stress: 60s; divergence field: 30s; vorticity: 65s; dot product:
7 minutes; variance: 6.5 minutes; linearity test: 25s.

7 CONCLUSIONS AND FUTURE WORK

We started this investigation with a general question of whether we
can use the particle velocity information to detect and characterize
multistreaming events. We hypothesized how the flow field should
behave given the various descriptions of multistreaming in the cos-
mology literature and formulated ways to extract regions with those
behaviors. These methods require a threshold value to determine if
a region is multistreaming or not. For that, we used a physics based
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Method Name | # Regions Found | # Intersections with halos | Accuracy (%) [ Coverage (%) |
Max Shear Stress 6576 1838 28.0 36.5
Divergence 616 529 86.0 10.5
\orticity 6770 2082 419 41.3
Dot Product 1368 1349 98.6 26.8
Variance 14 14 100.0 0.3
Linearity 122189 15240 12.5 100.0

Table 2: Overalps between multistreaming regions and halos using different velocity based methods.
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Figure 11: Overlay of halos as spheres and the different regions
found by velocity based regions as oriented ellipsoids. Different col-
ors indicate different methods.

approach of determining a time-varying threshold for the different
methods that would capture the multi-scale multistreaming events.

We have compared our results against the popular density based
halo finder as implemented in ParaView. Our findings indicate that:
(i) the different velocity based methods found multistreaming re-
gions and also provide additional information about their dynamic
behavior; (ii) there is good qualitative correspondence between the
regions found using our velocity based methods and those found by
ParaView’s halo finder; (iii) not all halos are the same in terms of
their dynamic qualities, and that the velocity based methods could
be used to classify halo types; (iv) the relationship between mul-
tistreaming regions and halos reflect those observed by Shandarin:
“While there are differences in the locations and peaks of over den-
sity and high velocity variance regions (or those by other velocity
based methods), we posit that these can be resolved by analyzing
the evolution of these regions as opposed to studying individual
frames of the simulation. In particular, we hypothesize that high
velocity variance regions (or those by other velocity based meth-
ods) may at a later time lead to high over density regions, and vice
versa.” Further investigations along this line will require feature
tracking tools which we are currently pursuing. No fancy visual-
ization was necessary to answer our science question in this inves-
tigation. We will endeavor to keep things simple as well in the
future.

There are several avenues of future research: a pushback to the
scientist is the question on how multistreaming relates to halos, and
what is the significance of halos with different behaviors? In terms
of the technical side, it would be interesting to see if a machine
learning approach may yield a superior feature extractor using some
combination of density and velocity based methods. Furthermore,

the methods we have explored so far are based on local informa-
tion. Some halo finders now use the 6-D phase space (3 position
and 3 direction) information to detect subhalos as well phase-space
structures such as pure streams and candidate caustics [11]. How
can one utilize phase-space analysis, beyond clustering, to detect
multistreaming regions in a global manner?
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